The CORR Procedure


  • Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. 2nd ed. New York: John Wiley & Sons.

  • Blum, J. R., Kiefer, J., and Rosenblatt, M. (1961). “Distribution Free Tests of Independence Based on the Sample Distribution Function.” Annals of Mathematical Statistics 32:485–498.

  • Cox, N. R. (1974). “Estimation of the Correlation between a Continuous and a Discrete Variable.” Biometrics 30:171–178.

  • Cronbach, L. J. (1951). “Coefficient Alpha and the Internal Structure of Tests.” Psychometrika 16:297–334.

  • Drasgow, F. (1986). “Polychoric and Polyserial Correlations.” In Encyclopedia of Statistical Sciences, vol. 7, edited by S. Kotz, N. L. Johnson, and C. B. Read. New York: John Wiley & Sons.

  • Fisher, R. A. (1921). “On the 'Probable Error' of a Coefficient of Correlation Deduced from a Small Sample.” Metron 1:3–32.

  • Fisher, R. A. (1936). “The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics 7:179–188.

  • Fisher, R. A. (1973). Statistical Methods for Research Workers. 14th ed. New York: Hafner Publishing.

  • Hoeffding, W. (1948). “A Non-parametric Test of Independence.” Annals of Mathematical Statistics 19:546–557.

  • Hollander, M., and Wolfe, D. A. (1999). Nonparametric Statistical Methods. 2nd ed. New York: John Wiley & Sons.

  • Keeping, E. S. (1962). Introduction to Statistical Inference. New York: D. Van Nostrand.

  • Knight, W. E. (1966). “A Computer Method for Calculating Kendall’s Tau with Ungrouped Data.” Journal of the American Statistical Association 61:436–439.

  • Noether, G. E. (1967). Elements of Nonparametric Statistics. New York: John Wiley & Sons.

  • Nunnally, J. C., and Bernstein, I. H. (1994). Psychometric Theory. 3rd ed. New York: McGraw-Hill.

  • Olsson, U. (1979). “Maximum Likelihood Estimation of the Polychoric Correlation Coefficient.” Psychometrika 12:443–460.

  • Olsson, U., Drasgow, F., and Dorans, N. J. (1982). “The Polyserial Correlation Coefficient.” Biometrika 47:337–347.

  • Yu, C. H. (2001). “An Introduction to Computing and Interpreting Cronbach Coefficient Alpha in SAS.” In Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference. Cary, NC: SAS Institute Inc.