The FREQ Procedure

References

  • Agresti, A. (1992), “A Survey of Exact Inference for Contingency Tables,” Statistical Science, 7, 131–177.

  • Agresti, A. (2002), Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

  • Agresti, A. (2007), An Introduction to Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

  • Agresti, A. (2013), Categorical Data Analysis, 3rd Edition, Hoboken, NJ: John Wiley & Sons.

  • Agresti, A. and Caffo, B. (2000), “Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures,” American Statistician, 54, 280–288.

  • Agresti, A. and Coull, B. A. (1998), “Approximate Is Better Than 'Exact' for Interval Estimation of Binomial Proportions,” American Statistician, 52, 119–126.

  • Agresti, A. and Gottard, A. (2007), “Nonconservative Exact Small-Sample Inference for Discrete Data,” Computational Statistics and Data Analysis, 51, 6447–6458.

  • Agresti, A., Mehta, C. R., and Patel, N. R. (1990), “Exact Inference for Contingency Tables with Ordered Categories,” Journal of the American Statistical Association, 85, 453–458.

  • Agresti, A. and Min, Y. (2001), “On Small-Sample Confidence Intervals for Parameters in Discrete Distributions,” Biometrics, 57, 963–971.

  • Agresti, A., Wackerly, D., and Boyett, J. M. (1979), “Exact Conditional Tests for Cross-Classifications: Approximation of Attained Significance Levels,” Psychometrika, 44, 75–83.

  • Bangdiwala, S. I. (1988), The Agreement Chart, Technical report, University of North Carolina at Chapel Hill, Department of Biostatistics.

  • Bangdiwala, S. I. and Bryan, H. E. (1987), “Using SAS Software Graphical Procedures for the Observer Agreement Chart,” in Proceedings of the Twelfth Annual SAS Users Group International Conference, 1083–1088, Cary, NC: SAS Institute Inc.

  • Bangdiwala, S. I., Haedo, A. S., Natal, M. L., and Villaveces, A. (2008), “The Agreement Chart as an Alternative to the Receiver-Operating Characteristic Curve for Diagnostic Tests,” Journal of Clinical Epidemiology, 61, 866–874.

  • Barker, L., Rolka, H., Rolka, D., and Brown, C. (2001), “Equivalence Testing for Binomial Random Variables: Which Test to Use?” American Statistician, 55, 279–287.

  • Barnard, G. A. (1945), “A New Test for $2 \times 2$ Tables,” Nature, 156, 177.

  • Barnard, G. A. (1947), “Significance Tests for $2 \times 2$ Tables,” Biometrika, 34, 123–138.

  • Barnard, G. A. (1949), “Statistical Inference,” Journal of the Royal Statistical Society, Series B, 11, 115–139.

  • Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis, 2nd Edition, New York: Springer-Verlag.

  • Birch, M. W. (1965), “The Detection of Partial Association, Part 2: The General Case,” Journal of the Royal Statistical Society, Series B, 27, 111–124.

  • Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975), Discrete Multivariate Analysis: Theory and Practice, Cambridge, MA: MIT Press.

  • Blaker, H. (2000), “Confidence Curves and Improved Exact Confidence Intervals for Discrete Distributions,” Canadian Journal of Statistics, 28, 783–798.

  • Bowker, A. H. (1948), “Bowker’s Test for Symmetry,” Journal of the American Statistical Association, 43, 572–574.

  • Breslow, N. E. (1996), “Statistics in Epidemiology: The Case-Control Study,” Journal of the American Statistical Association, 91, 14–26.

  • Breslow, N. E. and Day, N. E. (1980), The Analysis of Case-Control Studies, Statistical Methods in Cancer Research, IARC Scientific Publications, vol. 1, no. 32, Lyon: International Agency for Research on Cancer.

  • Breslow, N. E. and Day, N. E. (1987), The Design and Analysis of Cohort Studies, Statistical Methods in Cancer Research, IARC Scientific Publications, vol. 2, no. 82, Lyon: International Agency for Research on Cancer.

  • Bross, I. D. J. (1958), “How to Use Ridit Analysis,” Biometrics, 14, 18–38.

  • Brown, L. D., Cai, T. T., and DasGupta, A. (2001), “Interval Estimation for a Binomial Proportion,” Statistical Science, 16, 101–133.

  • Brown, M. B. and Benedetti, J. K. (1977), “Sampling Behavior of Tests for Correlation in Two-Way Contingency Tables,” Journal of the American Statistical Association, 72, 309–315.

  • Chan, I. S. F. (1998), “Exact Tests of Equivalence and Efficacy with a Non-zero Lower Bound for Comparative Studies,” Statistics in Medicine, 17, 1403–1413.

  • Chan, I. S. F. (2003), “Proving Non-inferiority or Equivalence of Two Treatments with Dichotomous Endpoints Using Exact Methods,” Statistical Methods in Medical Research, 12, 37–58.

  • Chan, I. S. F. and Zhang, Z. (1999), “Test-Based Exact Confidence Intervals for the Difference of Two Binomial Proportions,” Biometrics, 55, 1202–1209.

  • Chow, S.-C., Shao, J., and Wang, H. (2003), Sample Size Calculations in Clinical Research, Boca Raton, FL: CRC Press.

  • Cicchetti, D. V. and Allison, T. (1971), “A New Procedure for Assessing Reliability of Scoring EEG Sleep Recordings,” American Journal of EEG Technology, 11, 101–109.

  • Clopper, C. J. and Pearson, E. S. (1934), “The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial,” Biometrika, 26, 404–413.

  • Cochran, W. G. (1950), “The Comparison of Percentages in Matched Samples,” Biometrika, 37, 256–266.

  • Cochran, W. G. (1954), “Some Methods for Strengthening the Common $\chi ^2$ Tests,” Biometrics, 10, 417–451.

  • Cohen, J. (1960), “A Coefficient of Agreement for Nominal Scales,” Educational and Psychological Measurement, 20, 37–46.

  • Collett, D. (1991), Modelling Binary Data, London: Chapman & Hall.

  • Dann, R. S. and Koch, G. G. (2005), “Review and Evaluation of Methods for Computing Confidence Intervals for the Ratio of Two Proportions and Considerations for Non-inferiority Clinical Trials,” Journal of Biopharmaceutical Statistics, 15, 85–107.

  • Dmitrienko, A., Molenberghs, G., Chuang-Stein, C., and Offen, W. (2005), Analysis of Clinical Trials Using SAS: A Practical Guide, Cary, NC: SAS Institute Inc.

  • Drasgow, F. (1986), “Polychoric and Polyserial Correlations,” in S. Kotz, N. L. Johnson, and C. B. Read, eds., Encyclopedia of Statistical Sciences, volume 7, 68–74, New York: John Wiley & Sons.

  • Dunnett, C. W. and Gent, M. (1977), “Significance Testing to Establish Equivalence between Treatments, with Special Reference to Data in the Form of $2 \times 2$ Tables,” Biometrics, 33, 593–602.

  • Farrington, C. P. and Manning, G. (1990), “Test Statistics and Sample Size Formulae for Comparative Binomial Trials with Null Hypothesis of Non-zero Risk Difference or Non-unity Relative Risk,” Statistics in Medicine, 9, 1447–1454.

  • Fienberg, S. E. (1980), The Analysis of Cross-Classified Categorical Data, 2nd Edition, Cambridge, MA: MIT Press.

  • Fleiss, J. L. and Cohen, J. (1973), “The Equivalence of Weighted Kappa and the Intraclass Correlation Coefficient as Measures of Reliability,” Educational and Psychological Measurement, 33, 613–619.

  • Fleiss, J. L., Cohen, J., and Everitt, B. S. (1969), “Large-Sample Standard Errors of Kappa and Weighted Kappa,” Psychological Bulletin, 72, 323–327.

  • Fleiss, J. L., Levin, B., and Paik, M. C. (2003), Statistical Methods for Rates and Proportions, 3rd Edition, Hoboken, NJ: John Wiley & Sons.

  • Freeman, G. H. and Halton, J. H. (1951), “Note on an Exact Treatment of Contingency, Goodness of Fit, and Other Problems of Significance,” Biometrika, 38, 141–149.

  • Friendly, M. (2000), Visualizing Categorical Data, Cary, NC: SAS Institute Inc.

  • Gail, M. H. and Mantel, N. (1977), “Counting the Number of $r \times c$ Contingency Tables with Fixed Margins,” Journal of the American Statistical Association, 72, 859–862.

  • Gail, M. H. and Simon, R. (1985), “Tests for Qualitative Interactions between Treatment Effects and Patient Subsets,” Biometrics, 41, 361–372.

  • Gart, J. J. (1971), “The Comparison of Proportions: A Review of Significance Tests, Confidence Intervals, and Adjustments for Stratification,” Review of the International Statistical Institute, 39, 148–169.

  • Gart, J. J. and Nam, J. (1988), “Approximate Interval Estimation of the Ratio of Binomial Parameters: A Review and Corrections for Skewness,” Biometrics, 44, 323–338.

  • Goodman, L. A. and Kruskal, W. H. (1979), Measures of Association for Cross Classification, New York: Springer-Verlag.

  • Greenland, S. and Robins, J. M. (1985), “Estimation of a Common Effect Parameter from Sparse Follow-Up Data,” Biometrics, 41, 55–68.

  • Haldane, J. B. S. (1955), “The Estimation and Significance of the Logarithm of a Ratio of Frequencies,” Annals of Human Genetics, 20, 309–314.

  • Hauck, W. W. and Anderson, S. (1986), “A Comparison of Large-Sample Confidence Interval Methods for the Difference of Two Binomial Probabilities,” American Statistician, 40, 318–322.

  • Hirji, K. F. (2006), Exact Analysis of Discrete Data, Boca Raton, FL: Chapman & Hall/CRC.

  • Hirji, K. F., Vollset, S. E., Reis, I. M., and Afifi, A. A. (1996), “Exact Tests for Interaction in Several $2 \times 2$ Tables,” Journal of Computational and Graphical Statistics, 5, 209–224.

  • Hollander, M. and Wolfe, D. A. (1999), Nonparametric Statistical Methods, 2nd Edition, New York: John Wiley & Sons.

  • Jones, M. P., O’Gorman, T. W., Lemka, J. H., and Woolson, R. F. (1989), “A Monte Carlo Investigation of Homogeneity Tests of the Odds Ratio under Various Sample Size Configurations,” Biometrics, 45, 171–181.

  • Kendall, M. G. (1955), Rank Correlation Methods, 2nd Edition, London: Charles Griffin.

  • Kendall, M. G. and Stuart, A. (1979), The Advanced Theory of Statistics, volume 2, New York: Macmillan.

  • Kim, Y. and Won, S. (2013), “Adjusted Proportion Difference and Confidence Interval in Stratified Randomized Trials,” in Proceedings of PharmaSUG 2013 (Pharmaceutical Industry SAS Users Group), Cary, NC: SAS Institute Inc.

  • Kleinbaum, D. G., Kupper, L. L., and Morgenstern, H. (1982), Epidemiologic Research: Principles and Quantitative Methods, Research Methods Series, New York: Van Nostrand Reinhold.

  • Korn, E. L. and Graubard, B. I. (1998), “Confidence Intervals for Proportions with Small Expected Number of Positive Counts Estimated from Survey Data,” Survey Methodology, 24, 193–201.

  • Landis, J. R., Heyman, E. R., and Koch, G. G. (1978), “Average Partial Association in Three-Way Contingency Tables: A Review and Discussion of Alternative Tests,” International Statistical Review, 46, 237–254.

  • Leemis, L. M. and Trivedi, K. S. (1996), “A Comparison of Approximate Interval Estimators for the Bernoulli Parameter,” American Statistician, 50, 63–68.

  • Lehmann, E. L. and D’Abrera, H. J. M. (2006), Nonparametrics: Statistical Methods Based on Ranks, New York: Springer Science & Business Media.

  • Liebetrau, A. M. (1983), Measures of Association, volume 32 of Quantitative Applications in the Social Sciences, Beverly Hills, CA: Sage Publications.

  • Mack, G. A. and Skillings, J. H. (1980), “A Friedman-Type Rank Test for Main Effects in a Two-Factor ANOVA,” Journal of the American Statistical Association, 75, 947–951.

  • Mantel, N. (1963), “Chi-Square Tests with One Degree of Freedom: Extensions of the Mantel-Haenszel Procedure,” Journal of the American Statistical Association, 58, 690–700.

  • Mantel, N. and Fleiss, J. L. (1980), “Minimum Expected Cell Size Requirements for the Mantel-Haenszel One-Degree-of-Freedom Chi-Square Test and a Related Rapid Procedure,” American Journal of Epidemiology, 112, 129–134.

  • Mantel, N. and Haenszel, W. (1959), “Statistical Aspects of Analysis of Data from Retrospective Studies of Disease,” Journal of the National Cancer Institute, 22, 719–748.

  • Margolin, B. H. (1988), “Test for Trend in Proportions,” in S. Kotz, N. L. Johnson, and C. B. Read, eds., Encyclopedia of Statistical Sciences, volume 9, 334–336, New York: John Wiley & Sons.

  • McNemar, Q. (1947), “Note on the Sampling Error of the Difference between Correlated Proportions or Percentages,” Psychometrika, 12, 153–157.

  • Mee, R. W. (1984), “Confidence Bounds for the Difference between Two Probabilities,” Biometrics, 40, 1175–1176.

  • Mehta, C. R. and Patel, N. R. (1983), “A Network Algorithm for Performing Fisher’s Exact Test in $r \times c$ Contingency Tables,” Journal of the American Statistical Association, 78, 427–434.

  • Mehta, C. R., Patel, N. R., and Gray, R. J. (1985), “Computing an Exact Confidence Interval for the Common Odds Ratio in Several $2 \times 2$ Contingency Tables,” Journal of American Statistical Association, 80, 969–973.

  • Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1991), “Exact Stratified Linear Rank Tests for Binary Data,” in E. M. Keramidas, ed., Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, 200–207, Fairfax Station, VA: Interface Foundation.

  • Mehta, C. R., Patel, N. R., and Tsiatis, A. A. (1984), “Exact Significance Testing to Establish Treatment Equivalence with Ordered Categorical Data,” Biometrics, 40, 819–825.

  • Mehta, C. R. and Senchaudhuri, P. (2003), “Conditional versus Unconditional Exact Tests for Comparing Two Binomials,” .

  • Miettinen, O. S. (1985), Theoretical Epidemiology: Principles of Occurrence in Research Medicine, New York: John Wiley & Sons.

  • Miettinen, O. S. and Nurminen, M. M. (1985), “Comparative Analysis of Two Rates,” Statistics in Medicine, 4, 213–226.

  • Newcombe, R. G. (1998a), “Interval Estimation for the Difference between Independent Proportions: Comparison of Eleven Methods,” Statistics in Medicine, 17, 873–890.

  • Newcombe, R. G. (1998b), “Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods,” Statistics in Medicine, 17, 857–872.

  • Newcombe, R. G. and Nurminen, M. M. (2011), “In Defence of Score Intervals for Proportions and Their Differences,” Communications in Statistics—Theory and Methods, 40, 1271–1282.

  • Olsson, U. (1979), “Maximum Likelihood Estimation of the Polychoric Correlation Coefficient,” Psychometrika, 12, 443–460.

  • Pirie, W. (1983), “Jonckheere Tests for Ordered Alternatives,” in S. Kotz, N. L. Johnson, and C. B. Read, eds., Encyclopedia of Statistical Sciences, volume 4, 315–318, New York: John Wiley & Sons.

  • Radlow, R. and Alf, E. F. (1975), “An Alternate Multinomial Assessment of the Accuracy of the Chi-Square Test of Goodness of Fit,” Journal of the American Statistical Association, 70, 811–813.

  • Robins, J. M., Breslow, N., and Greenland, S. (1986), “Estimators of the Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-Strata Limiting Models,” Biometrics, 42, 311–323.

  • Santner, T. J., Pradhan, V., Senchaudhuri, P., Mehta, C. R., and Tamhane, A. (2007), “Small-Sample Comparisons of Confidence Intervals for the Difference of Two Independent Binomial Proportions,” Computational Statistics and Data Analysis, 51, 5791–5799.

  • Santner, T. J. and Snell, M. K. (1980), “Small-Sample Confidence Intervals for $p_1-p_2$ and $p_1/p_2$ in $2 \times 2$ Contingency Tables,” Journal of the American Statistical Association, 75, 386–394.

  • Sato, T. (1989), “On the Variance Estimator of the Mantel-Haenszel Risk Difference,” Biometrics, 45, 1323–1324, letter to the editor.

  • Schuirmann, D. J. (1987), “A Comparison of the Two One-Sided Tests Procedure and the Power Approach for Assessing the Equivalence of Average Bioavailability,” Journal of Pharmacokinetics and Biopharmaceutics, 15, 657–680.

  • Schuirmann, D. J. (1999), “Confidence Interval Methods for Bioequivalence Testing with Binomial Endpoints,” in Proceedings of the Biopharmaceutical Section, 227–232, Alexandria, VA: American Statistical Association.

  • Silvapulle, M. J. (2001), “Tests against Qualitative Interaction: Exact Critical Values and Robust Tests,” Biometrics, 57, 1157–1165.

  • Snedecor, G. W. and Cochran, W. G. (1989), Statistical Methods, 8th Edition, Ames: Iowa State University Press.

  • Somers, R. H. (1962), “A New Asymmetric Measure of Association for Ordinal Variables,” American Sociological Review, 27, 799–811.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2012), Categorical Data Analysis Using SAS, 3rd Edition, Cary, NC: SAS Institute Inc.

  • Suissa, S. and Shuster, J. J. (1985), “Exact Unconditional Sample Sizes for the $2 \times 2$ Binomial Trial,” Journal of the Royal Statistical Society, Series A, 148, 317–327.

  • Tarone, R. E. (1985), “On Heterogeneity Tests Based on Efficient Scores,” Biometrika, 72, 1, 91–95.

  • Theil, H. (1972), Statistical Decomposition Analysis, Amsterdam: North-Holland.

  • Thomas, D. G. (1971), “Algorithm AS-36: Exact Confidence Limits for the Odds Ratio in a $2\times 2$ Table,” Applied Statistics, 20, 105–110.

  • Valz, P. D. and Thompson, M. E. (1994), “Exact Inference for Kendall’s S and Spearman’s $\rho $ with Extensions to Fisher’s Exact Test in $r \times c$ Contingency Tables,” Journal of Computational and Graphical Statistics, 3, 459–472.

  • van Elteren, P. H. (1960), “On the Combination of Independent Two-Sample Tests of Wilcoxon,” Bulletin of the International Statistical Institute, 37, 351–361.

  • Vollset, S. E., Hirji, K. F., and Elashoff, R. M. (1991), “Fast Computation of Exact Confidence Limits for the Common Odds Ratio in a Series of $2 \times 2$ Tables,” Journal of the American Statistical Association, 86, 404–409.

  • Wilson, E. B. (1927), “Probable Inference, the Law of Succession, and Statistical Inference,” Journal of the American Statistical Association, 22, 209–212.

  • Woolf, B. (1955), “On Estimating the Relationship between Blood Group and Disease,” Annals of Human Genetics, 19, 251–253.

  • Yan, X. and Su, X. G. (2010), “Stratified Wilson and Newcombe Confidence Intervals for Multiple Binomial Proportions,” Statistics in Biopharmaceutical Research, 2, 329–335.

  • Zelen, M. (1971), “The Analysis of Several $2 \times 2$ Contingency Tables,” Biometrika, 58, 129–137.