The HPCORR Procedure

References

  • Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis, Second Edition, New York: John Wiley & Sons.

  • Blum, J. R., Kiefer, J., and Rosenblatt, M. (1961), Distribution Free Tests of Independence Based on the Sample Distribution Function, Annals of Mathematical Statistics, 32, 485–498.

  • Conover, W. J. (1998), Practical Nonparametric Statistics, Third Edition, New York: John Wiley & Sons.

  • Cox, N. R. (1974), Estimation of the Correlation between a Continuous and a Discrete Variable, Biometrics, 30, 171–178.

  • Cronbach, L. J. (1951), Coefficient Alpha and the Internal Structure of Tests, Psychometrika, 16, 297–334.

  • Drasgow, F. (1986), Polychoric and Polyserial Correlations in Encyclopedia of Statistical Sciences, vol. 7, ed. S. Kotz and N. L. Johnson, New York: John Wiley & Sons, 68–74.

  • Fisher, R. A. (1915), Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population, Biometrika, 10, 507–521.

  • Fisher, R. A. (1921), On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample, Metron, 1, 3–32.

  • Fisher, R. A. (1936), The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, 7, 179–188.

  • Fisher, R. A. (1970), Statistical Methods for Research Workers, Fourteenth Edition, Davien, CT: Hafner Publishing Company.

  • Hoeffding, W. (1948), A Non-Parametric Test of Independence, Annals of Mathematical Statistics, 19, 546–557.

  • Hollander, M. and Wolfe, D. (1999), Nonparametric Statistical Methods, Second Edition, New York: John Wiley & Sons.

  • Keeping, E. S. (1962), Introduction to Statistical Inference, New York: D. Van Nostrand.

  • Knight, W. E. (1966), A Computer Method for Calculating Kendall’s Tau with Ungrouped Data, Journal of the American Statistical Association, 61, 436–439.

  • Moore, D. S. (2000), Statistics: Concepts and Controversies, Fifth Edition, New York: W. H. Freeman.

  • Mudholkar, G. S. (1983), Fisher’s $z$-Transformation, Encyclopedia of Statistical Sciences, 3, 130–135.

  • Noether, G. E. (1967), Elements of Nonparametric Statistics, New York: John Wiley & Sons.

  • Novick, M. R. (1967), Coefficient Alpha and the Reliability of Composite Measurements, Psychometrika, 32, 1–13.

  • Nunnally, J. C. and Bernstein, I. H. (1994), Psychometric Theory, Third Edition, New York: McGraw-Hill.

  • Olsson, U., Drasgow, F., and Dorans, N. J. (1982), The Polyserial Correlation Coefficient, Biometrika, 47, 337–347.

  • Ott, R. L. and Longnecker, M. T. (2000), An Introduction to Statistical Methods and Data Analysis, Fifth Edition, Belmont, CA: Wadsworth.

  • Spector, P. E. (1992), Summated Rating Scale Construction: An Introduction, Newbury Park, CA: Sage.

  • Yu, C. H. (2001) An Introduction to Computing and Interpreting Cronbach Coefficient Alpha in SAS, Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference, Cary, NC: SAS Institute, Inc., paper 246.