


The following statements use the WEIGHT2= option, and the project groups in a research department as depicted in Figure 1.141. The data set contains the original weight and its inverse, which is used in the calculations of closeness and betweenness.
data LinkSetInDept2; input from $1-12 to $13-24 weight weightInv; datalines; Yu Chapman 3 0.33 Gotti Chapman 3 0.33 Oliver Chapman 3 0.33 Snopp Chapman 3 0.33 Gukrishnan Leon 1 1 Snopp Gukrishnan 1 1 Kabutz Gukrishnan 1 1 Kabutz Snopp 1 1 Snopp Leon 1 1 Kabutz Leon 1 1 Gotti Oliver 1 1 Gotti Patrick 1 1 Oliver Patrick 1 1 Zhuo Oliver 1 1 Zhuo Gotti 1 1 Zhuo Patrick 1 1 Kabutz Gotti 1 1 Leon Gotti 1 1 Polark Yu 2 0.50 Polark Chang 1 1 Chang Angel 1 1 Polark Angel 1 1 Weng Polark 1 1 Weng Chang 1 1 Weng Angel 1 1 Christoph Yu 2 0.50 Christoph Nardo 1 1 Christoph Gotti 1 1 Christoph Zhuo 1 1 Nardo Gotti 1 1 Nardo Zhuo 1 1 Graffe Yu 2 0.50 Graffe Hund 1 1 Graffe Zhuo 1 1 Zhuo Hund 1 1 ;
proc optgraph
data_nodes = NodeSetInDept
data_links = LinkSetInDept2
out_nodes = NodeSetOut;
performance
nthreads = 2;
centrality
clustering_coef
degree = out
influence = weight
close = weight
between = weight
eigen = weight
weight2 = weightInv;
run;
The node data set NodeSetOut now shows the resulting centrality metrics given both weight interpretations.
Output 1.6.1: Centrality for Project Groups in a Research Department
| node | weight | centr_degree_out | centr_eigen_wt | centr_close_wt | centr_between_wt | centr_influence1_wt | centr_influence2_wt | centr_cluster |
|---|---|---|---|---|---|---|---|---|
| Chapman | 4 | 4 | 1.00000 | 0.88959 | 0.44118 | 0.42857 | 1.10714 | 0.16667 |
| Yu | 3 | 4 | 0.62475 | 0.87404 | 0.50000 | 0.32143 | 0.92857 | 0.00000 |
| Gotti | 2 | 8 | 0.70480 | 0.81849 | 0.20956 | 0.35714 | 1.57143 | 0.28571 |
| Polark | 2 | 4 | 0.18777 | 0.69530 | 0.30882 | 0.17857 | 0.64286 | 0.50000 |
| Christoph | 2 | 4 | 0.34168 | 0.68521 | 0.05882 | 0.17857 | 1.03571 | 0.50000 |
| Oliver | 2 | 4 | 0.58858 | 0.74203 | 0.04044 | 0.21429 | 1.14286 | 0.66667 |
| Snopp | 2 | 4 | 0.49133 | 0.75859 | 0.16176 | 0.21429 | 0.82143 | 0.50000 |
| Zhuo | 1 | 7 | 0.32567 | 0.58319 | 0.06618 | 0.25000 | 1.17857 | 0.33333 |
| Nardo | 1 | 3 | 0.18983 | 0.51813 | 0.00000 | 0.10714 | 0.78571 | 1.00000 |
| Weng | 1 | 3 | 0.03591 | 0.44213 | 0.00000 | 0.10714 | 0.39286 | 1.00000 |
| Chang | 1 | 3 | 0.03591 | 0.44213 | 0.00000 | 0.10714 | 0.39286 | 1.00000 |
| Hund | 1 | 2 | 0.07667 | 0.45153 | 0.00000 | 0.07143 | 0.39286 | 1.00000 |
| Graffe | 1 | 3 | 0.22852 | 0.67220 | 0.08088 | 0.14286 | 0.64286 | 0.33333 |
| Leon | 1 | 4 | 0.21239 | 0.50822 | 0.00000 | 0.14286 | 0.82143 | 0.66667 |
| Gukrishnan | 1 | 3 | 0.12674 | 0.46690 | 0.00000 | 0.10714 | 0.50000 | 1.00000 |
| Kabutz | 1 | 4 | 0.21239 | 0.50822 | 0.00000 | 0.14286 | 0.82143 | 0.66667 |
| Patrick | 1 | 3 | 0.22398 | 0.50074 | 0.00000 | 0.10714 | 0.82143 | 1.00000 |
| Angel | 1 | 3 | 0.03591 | 0.44213 | 0.00000 | 0.10714 | 0.39286 | 1.00000 |