The OPTLP Procedure

Example 11.1 Oil Refinery Problem

Consider an oil refinery scenario. A step in refining crude oil into finished oil products involves a distillation process that splits crude into various streams. Suppose there are three types of crude available: Arabian light (a_l), Arabian heavy (a_h), and Brega (br). These crudes are distilled into light naphtha (na_l), intermediate naphtha (na_i), and heating oil (h_o). These in turn are blended into two types of jet fuel. Jet fuel j_1 is made up of 30% intermediate naphtha and 70% heating oil, and jet fuel j_2 is made up of 20% light naphtha and 80% heating oil. What amounts of the three crudes maximize the profit from producing jet fuel (j_1, j_2)? This problem can be formulated as the following linear program:

\[  \begin{array}{rrcrcrccccc} \max &  \multicolumn{9}{l}{ -\,  175\, \mr {a\_ l} - 165\,  \mr {a\_ h} - 205\,  \mr {br} + 350\,  \mr {j\_ 1} + 350\,  \mr {j\_ 2}} \\ \mr {subject\  to} & & & & & & & & & \\ (\mr {napha\_ l}) &  0.035\, \mr {a\_ l} & +&  0.03\,  \mr {a\_ h} & +&  0.045 \,  \mr {br} & =&  \mr {na\_ l} & & \\ (\mr {napha\_ i}) &  0.1\,  \mr {a\_ l} & +&  0.075\, \mr {a\_ h} & +&  0.135\,  \mr {br} & =&  \mr {na\_ i} & & \\ (\mr {htg\_ oil}) &  0.39\, \mr {a\_ l} & +&  0.3\,  \mr {a\_ h} & +&  0.43\,  \mr {br} & =&  \mr {h\_ o} & & \\ (\mr {blend1}) & & &  0.3\, \mr {j\_ 1} & & & \leq &  \mr {na\_ i} & & \\ (\mr {blend2}) & & & & &  0.2\, \mr {j\_ 2} & \leq &  \mr {na\_ l} & & \\ (\mr {blend3}) & & &  0.7\, \mr {j\_ 1} & +&  0.8\, \mr {j\_ 2} & \leq &  \mr {h\_ o} & & \\ & \mr {a\_ l} & & & & & \leq &  110 & & \\ & & &  \mr {a\_ h} & & & \leq &  165 & & \\ & & & & &  \mr {br} & \leq &  80 & & \\ & \multicolumn{5}{r}\mr {a\_ l, a\_ h, br, na\_ 1, na\_ i, h\_ o, j\_ 1, j\_ 2} & \geq &  0 & & \end{array}  \]

The constraints blend1 and blend2 ensure that j_1 and j_2 are made with the specified amounts of na_i and na_l, respectively. The constraint blend3 is actually the reduced form of the following constraints:

\[  \begin{array}{ccccc} \textrm{h\_ o1} & & &  \geq &  0.7\, \textrm{j\_ 1} \\ & & \textrm{h\_ o2} &  \geq &  0.8\, \textrm{j\_ 2} \\ \textrm{h\_ o1} &  + & \textrm{h\_ o2} &  \leq &  \textrm{h\_ o} \end{array}  \]

where h_o1 and h_o2 are dummy variables.

You can use the following SAS code to create the input data set ex1:

data ex1;
   input field1 $ field2 $ field3 $ field4 field5 $ field6;
   datalines;
NAME        .          EX1      .     .         .
ROWS        .          .        .     .         .
 N          profit     .        .     .         .
 E          napha_l    .        .     .         .
 E          napha_i    .        .     .         . 
 E          htg_oil    .        .     .         .
 L          blend1     .        .     .         .
 L          blend2     .        .     .         .
 L          blend3     .        .     .         .
COLUMNS     .          .        .     .         .
.           a_l        profit   -175  napha_l   .035
.           a_l        napha_i  .100  htg_oil   .390
.           a_h        profit   -165  napha_l   .030
.           a_h        napha_i  .075  htg_oil   .300
.           br         profit   -205  napha_l   .045
.           br         napha_i  .135  htg_oil   .430
.           na_l       napha_l  -1    blend2    -1
.           na_i       napha_i  -1    blend1    -1
.           h_o        htg_oil  -1    blend3    -1
.           j_1        profit   350   blend1    .3
.           j_1        blend3   .7    .         . 
.           j_2        profit   350   blend2    .2
.           j_2        blend3   .8    .         .
BOUNDS      .          .        .     .         .
UP          .          a_l      110   .         .
UP          .          a_h      165   .         .
UP          .          br       80    .         .
ENDATA      .          .        .     .         .
;

You can use the following call to PROC OPTLP to solve the LP problem:

proc optlp data=ex1
   objsense  = max
   algorithm = primal
   primalout = ex1pout
   dualout   = ex1dout
   logfreq   = 1;
run;
%put &_OROPTLP_; 

Note that the OBJSENSE=MAX option is used to indicate that the objective function is to be maximized.

The primal and dual solutions are displayed in Output 11.1.1.

Output 11.1.1: Example 1: Primal and Dual Solution Output

Primal Solution

Obs Objective Function ID RHS ID Variable
Name
Variable
Type
Objective
Coefficient
Lower
Bound
Upper Bound Variable Value Variable
Status
Reduced Cost
1 profit   a_l D -175 0 110 110.000 U 10.2083
2 profit   a_h D -165 0 165 0.000 L -22.8125
3 profit   br D -205 0 80 80.000 U 2.8125
4 profit   na_l N 0 0 1.7977E308 7.450 B 0.0000
5 profit   na_i N 0 0 1.7977E308 21.800 B 0.0000
6 profit   h_o N 0 0 1.7977E308 77.300 B 0.0000
7 profit   j_1 N 350 0 1.7977E308 72.667 B 0.0000
8 profit   j_2 N 350 0 1.7977E308 33.042 B 0.0000

Dual Solution

Obs Objective Function ID RHS ID Constraint Name Constraint
Type
Constraint
RHS
Constraint
Lower
Bound
Constraint
Upper
Bound
Dual Variable
Value
Constraint
Status
Constraint Activity
1 profit   napha_l E 0 . . 0.000 L 0.00000
2 profit   napha_i E 0 . . -145.833 U 0.00000
3 profit   htg_oil E 0 . . -437.500 U 0.00000
4 profit   blend1 L 0 . . 145.833 L -0.00000
5 profit   blend2 L 0 . . 0.000 B -0.84167
6 profit   blend3 L 0 . . 437.500 L -0.00000


The progress of the solution is printed to the log as follows.

Output 11.1.2: Log: Solution Progress

NOTE: The problem EX1 has 8 variables (0 free, 0 fixed).                        
NOTE: The problem has 6 constraints (3 LE, 3 EQ, 0 GE, 0 range).                
NOTE: The problem has 19 constraint coefficients.                               
WARNING: The objective sense has been changed to maximization.                  
NOTE: The LP presolver value AUTOMATIC is applied.                              
NOTE: The LP presolver removed 3 variables and 3 constraints.                   
NOTE: The LP presolver removed 3 constraint coefficients.                       
NOTE: The LP presolver formulated the dual of the problem.                      
NOTE: The presolved problem has 6 variables, 5 constraints, and 16 constraint   
      coefficients.                                                             
NOTE: The LP solver is called.                                                  
NOTE: The Primal Simplex algorithm is used.                                     
                           Objective                Entering      Leaving       
      Phase Iteration        Value         Time     Variable      Variable      
       P 1          1    1.400000E+03         0     blend2            j_2 (S)   
       P 1          2    7.000000E+02         0     blend1            a_l (S)   
       P 1          3    1.267500E+02         0         br             br (S)   
       P 1          4    1.750000E+01         0        a_l            j_1 (S)   
       P 1          5    0.000000E+00         0                                 
       P 2          6    2.820833E+03         0     blend3         blend2       
       P 2          7    1.347916E+03         0                                 
       D 2          8    1.347917E+03         0                                 
NOTE: Optimal.                                                                  
NOTE: Objective = 1347.9166667.                                                 
NOTE: The Primal Simplex solve time is 0.00 seconds.                            
NOTE: The data set WORK.EX1POUT has 8 observations and 10 variables.            
NOTE: The data set WORK.EX1DOUT has 6 observations and 10 variables.            


Note that the %put statement immediately after the OPTLP procedure prints value of the macro variable _OROPTLP_ to the log as follows.

Output 11.1.3: Log: Value of the Macro Variable _OROPTLP_

STATUS=OK   ALGORITHM=PS   SOLUTION_STATUS=OPTIMAL   OBJECTIVE=1347.9166667     
PRIMAL_INFEASIBILITY=0   DUAL_INFEASIBILITY=0   BOUND_INFEASIBILITY=0           
ITERATIONS=8   PRESOLVE_TIME=0.00   SOLUTION_TIME=0.00                          


The value briefly summarizes the status of the OPTLP procedure upon termination.