Example 2.4: Using Constraints and More Alteration to Arc Data
Suppose the 25-inch screen TVs produced at factory 1 in
May can be sold at either
shop with an increased profit of 40 dollars each.
What is the new optimal solution?
title2 'Using Constraints and Altering arc data';
data new_arc4;
set arc4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_='f1_may_2' & (_head_='shop1_2' | _head_='shop2_2')
then _cost_=_cost_-40;
run;
proc intpoint
bytes=1000000
printlevel2=2
arcdata=new_arc4 nodedata=node0
condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
conout=arc5;
run;
proc print data=arc5;
var _tail_ _head_ _cost_ _capac_ _lo_
_supply_ _demand_ _name_
_flow_ _fcost_ oldflow oldfc;
/* to get this variable order */
sum oldfc _fcost_;
run;
The following messages appear on the SAS log:
NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of side constraint coefficients= 16 .
NOTE: The following messages relate to the equivalent
Linear Programming problem solved by the Interior
Point algorithm.
NOTE: Number of <= constraints= 5 .
NOTE: Number of == constraints= 21 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 152 .
NOTE: Number of variables= 68 .
NOTE: After preprocessing, number of <= constraints= 5.
NOTE: After preprocessing, number of == constraints= 20.
NOTE: After preprocessing, number of >= constraints= 0.
NOTE: The preprocessor eliminated 1 constraints from the
problem.
NOTE: The preprocessor eliminated 9 constraint coefficients
from the problem.
NOTE: 5 columns, 0 rows and 5 coefficients were added to
the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.
NOTE: There are 74 nonzero elements in A * A transpose.
NOTE: Of the 25 rows and columns, 14 are sparse.
NOTE: There are 74 nonzero superdiagonal elements in the
sparse rows of the factored A * A transpose. This
includes fill-in.
NOTE: There are 65 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.
Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd
0 -1.000000 178045680 0.833846 52835 39643 49592
1 51679271 22114244 0.911781 2979.752508 2235.802470 2678.044487
2 4360227 1397064 0.521965 0 2.084022E-11 46.964760
3 337615 239843 0.155358 0 0 8.067907
4 119497 59613 0.042674 0 0 1.263035
5 30689 20758 0.015076 0 0 0.430638
6 9107.182114 7099.343072 0.005192 0 0 0.109413
7 3406.632390 1496.513249 0.001098 0 0 0.003935
8 616.222707 155.883444 0.000114 0 0 0.000480
9 23.880446 1.372116 0.000001007 0 0 0
10 0.000755 0.000068819 -4.28512E-10 0 0 0
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm
performed 10 iterations.
NOTE: Objective = -1295661.8.
NOTE: The data set WORK.ARC5 has 64 observations and 17
variables.
NOTE: There were 64 observations read from the data set
WORK.NEW_ARC4.
NOTE: There were 8 observations read from the data set
WORK.NODE0.
NOTE: There were 21 observations read from the data set
WORK.CON3.
Output 2.4.1: CONOUT=ARC5
fact1_1 |
f1_apr_1 |
78.60 |
600 |
50 |
1000 |
. |
prod f1 19 apl |
533.333 |
41920.00 |
533.333 |
41920.00 |
f1_mar_1 |
f1_apr_1 |
15.00 |
50 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_may_1 |
f1_apr_1 |
33.60 |
20 |
0 |
. |
. |
back f1 19 may |
0.000 |
0.00 |
0.000 |
0.00 |
f2_apr_1 |
f1_apr_1 |
11.00 |
40 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
fact1_2 |
f1_apr_2 |
174.50 |
550 |
50 |
1000 |
. |
prod f1 25 apl |
250.000 |
43625.00 |
250.000 |
43625.00 |
f1_mar_2 |
f1_apr_2 |
20.00 |
40 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_may_2 |
f1_apr_2 |
49.20 |
15 |
0 |
. |
. |
back f1 25 may |
0.000 |
0.00 |
0.000 |
0.00 |
f2_apr_2 |
f1_apr_2 |
21.00 |
25 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
fact1_1 |
f1_mar_1 |
127.90 |
500 |
50 |
1000 |
. |
prod f1 19 mar |
333.333 |
42633.33 |
333.333 |
42633.33 |
f1_apr_1 |
f1_mar_1 |
33.60 |
20 |
0 |
. |
. |
back f1 19 apl |
20.000 |
672.00 |
20.000 |
672.00 |
f2_mar_1 |
f1_mar_1 |
10.00 |
40 |
0 |
. |
. |
|
40.000 |
400.00 |
40.000 |
400.00 |
fact1_2 |
f1_mar_2 |
217.90 |
400 |
40 |
1000 |
. |
prod f1 25 mar |
400.000 |
87160.00 |
400.000 |
87160.00 |
f1_apr_2 |
f1_mar_2 |
38.40 |
30 |
0 |
. |
. |
back f1 25 apl |
30.000 |
1152.00 |
30.000 |
1152.00 |
f2_mar_2 |
f1_mar_2 |
20.00 |
25 |
0 |
. |
. |
|
25.000 |
500.00 |
25.000 |
500.00 |
fact1_1 |
f1_may_1 |
90.10 |
400 |
50 |
1000 |
. |
|
128.333 |
11562.83 |
128.333 |
11562.83 |
f1_apr_1 |
f1_may_1 |
12.00 |
50 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f2_may_1 |
f1_may_1 |
13.00 |
40 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
fact1_2 |
f1_may_2 |
113.30 |
350 |
40 |
1000 |
. |
|
350.000 |
39655.00 |
350.000 |
39655.00 |
f1_apr_2 |
f1_may_2 |
18.00 |
40 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f2_may_2 |
f1_may_2 |
13.00 |
25 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_apr_1 |
f2_apr_1 |
11.00 |
99999999 |
0 |
. |
. |
|
13.333 |
146.67 |
13.333 |
146.67 |
fact2_1 |
f2_apr_1 |
62.40 |
480 |
35 |
850 |
. |
prod f2 19 apl |
480.000 |
29952.00 |
480.000 |
29952.00 |
f2_mar_1 |
f2_apr_1 |
18.00 |
30 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f2_may_1 |
f2_apr_1 |
30.00 |
15 |
0 |
. |
. |
back f2 19 may |
0.000 |
0.00 |
0.000 |
0.00 |
f1_apr_2 |
f2_apr_2 |
23.00 |
99999999 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
fact2_2 |
f2_apr_2 |
196.70 |
680 |
35 |
1500 |
. |
prod f2 25 apl |
550.000 |
108185.00 |
577.500 |
113594.25 |
f2_mar_2 |
f2_apr_2 |
28.00 |
50 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f2_may_2 |
f2_apr_2 |
64.80 |
15 |
0 |
. |
. |
back f2 25 may |
0.000 |
0.00 |
0.000 |
0.00 |
f1_mar_1 |
f2_mar_1 |
11.00 |
99999999 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
fact2_1 |
f2_mar_1 |
88.00 |
450 |
35 |
850 |
. |
prod f2 19 mar |
290.000 |
25520.00 |
290.000 |
25520.00 |
f2_apr_1 |
f2_mar_1 |
20.40 |
15 |
0 |
. |
. |
back f2 19 apl |
0.000 |
0.00 |
0.000 |
0.00 |
f1_mar_2 |
f2_mar_2 |
23.00 |
99999999 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
fact2_2 |
f2_mar_2 |
182.00 |
650 |
35 |
1500 |
. |
prod f2 25 mar |
650.000 |
118300.00 |
650.000 |
118300.00 |
f2_apr_2 |
f2_mar_2 |
37.20 |
15 |
0 |
. |
. |
back f2 25 apl |
0.000 |
0.00 |
0.000 |
0.00 |
f1_may_1 |
f2_may_1 |
16.00 |
99999999 |
0 |
. |
. |
|
115.000 |
1840.00 |
115.000 |
1840.00 |
fact2_1 |
f2_may_1 |
128.80 |
250 |
35 |
850 |
. |
|
35.000 |
4508.00 |
35.000 |
4508.00 |
f2_apr_1 |
f2_may_1 |
20.00 |
30 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_may_2 |
f2_may_2 |
26.00 |
99999999 |
0 |
. |
. |
|
0.000 |
0.00 |
350.000 |
9100.00 |
fact2_2 |
f2_may_2 |
181.40 |
550 |
35 |
1500 |
. |
|
150.000 |
27210.00 |
122.500 |
22221.50 |
f2_apr_2 |
f2_may_2 |
38.00 |
50 |
0 |
. |
. |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_mar_1 |
shop1_1 |
-327.65 |
250 |
0 |
. |
900 |
|
143.333 |
-46963.17 |
143.333 |
-46963.17 |
f1_apr_1 |
shop1_1 |
-300.00 |
250 |
0 |
. |
900 |
|
250.000 |
-75000.00 |
250.000 |
-75000.00 |
f1_may_1 |
shop1_1 |
-285.00 |
250 |
0 |
. |
900 |
|
13.333 |
-3800.00 |
13.333 |
-3800.00 |
f2_mar_1 |
shop1_1 |
-297.40 |
250 |
0 |
. |
900 |
|
250.000 |
-74350.00 |
250.000 |
-74350.00 |
f2_apr_1 |
shop1_1 |
-290.00 |
250 |
0 |
. |
900 |
|
243.333 |
-70566.67 |
243.333 |
-70566.67 |
f2_may_1 |
shop1_1 |
-292.00 |
250 |
0 |
. |
900 |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_mar_2 |
shop1_2 |
-559.76 |
99999999 |
0 |
. |
900 |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_apr_2 |
shop1_2 |
-524.28 |
99999999 |
0 |
. |
900 |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_may_2 |
shop1_2 |
-515.02 |
99999999 |
0 |
. |
900 |
|
350.000 |
-180257.00 |
0.000 |
0.00 |
f2_mar_2 |
shop1_2 |
-567.83 |
500 |
0 |
. |
900 |
|
500.000 |
-283915.00 |
500.000 |
-283915.00 |
f2_apr_2 |
shop1_2 |
-542.19 |
500 |
0 |
. |
900 |
|
50.000 |
-27109.50 |
400.000 |
-216876.00 |
f2_may_2 |
shop1_2 |
-491.56 |
500 |
0 |
. |
900 |
|
0.000 |
0.00 |
0.000 |
0.00 |
f1_mar_1 |
shop2_1 |
-362.74 |
250 |
0 |
. |
900 |
|
250.000 |
-90685.00 |
250.000 |
-90685.00 |
f1_apr_1 |
shop2_1 |
-300.00 |
250 |
0 |
. |
900 |
|
250.000 |
-75000.00 |
250.000 |
-75000.00 |
f1_may_1 |
shop2_1 |
-245.00 |
250 |
0 |
. |
900 |
|
0.000 |
0.00 |
0.000 |
0.00 |
f2_mar_1 |
shop2_1 |
-272.70 |
250 |
0 |
. |
900 |
|
0.000 |
0.00 |
0.000 |
0.00 |
f2_apr_1 |
shop2_1 |
-312.00 |
250 |
0 |
. |
900 |
|
250.000 |
-78000.00 |
250.000 |
-78000.00 |
f2_may_1 |
shop2_1 |
-299.00 |
250 |
0 |
. |
900 |
|
150.000 |
-44850.00 |
150.000 |
-44850.00 |
f1_mar_2 |
shop2_2 |
-623.89 |
99999999 |
0 |
. |
1450 |
|
455.000 |
-283869.95 |
455.000 |
-283869.95 |
f1_apr_2 |
shop2_2 |
-549.68 |
99999999 |
0 |
. |
1450 |
|
220.000 |
-120929.60 |
220.000 |
-120929.60 |
f1_may_2 |
shop2_2 |
-500.00 |
99999999 |
0 |
. |
1450 |
|
0.000 |
0.00 |
0.000 |
0.00 |
f2_mar_2 |
shop2_2 |
-542.83 |
500 |
0 |
. |
1450 |
|
125.000 |
-67853.75 |
125.000 |
-67853.75 |
f2_apr_2 |
shop2_2 |
-559.19 |
500 |
0 |
. |
1450 |
|
500.000 |
-279595.00 |
177.500 |
-99256.23 |
f2_may_2 |
shop2_2 |
-519.06 |
500 |
0 |
. |
1450 |
|
150.000 |
-77859.00 |
472.500 |
-245255.85 |
|
Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.