The following example is attributed to Haldi (Garfinkel and Nemhauser 1972) and is used in the literature as a test problem. Notice that the ACTIVEOUT=
and the PRIMALOUT=
options are used when invoking PROC LP. These cause the LP procedure to save the primal solution in the data set named P
and the active tree in the data set named A
. If the procedure fails to find an optimal integer solution on the initial call, it can be called later using the A
and P
data sets as starting information.
data haldi10; input x1-x12 _type_ $ _rhs_; datalines; 0 0 0 0 0 0 1 1 1 1 1 1 MAX . 9 7 16 8 24 5 3 7 8 4 6 5 LE 110 12 6 6 2 20 8 4 6 3 1 5 8 LE 95 15 5 12 4 4 5 5 5 6 2 1 5 LE 80 18 4 4 18 28 1 6 4 2 9 7 1 LE 100 -12 0 0 0 0 0 1 0 0 0 0 0 LE 0 0 -15 0 0 0 0 0 1 0 0 0 0 LE 0 0 0 -12 0 0 0 0 0 1 0 0 0 LE 0 0 0 0 -10 0 0 0 0 0 1 0 0 LE 0 0 0 0 0 -11 0 0 0 0 0 1 0 LE 0 0 0 0 0 0 -11 0 0 0 0 0 1 LE 0 1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 UPPERBD . 1 2 3 4 5 6 7 8 9 10 11 12 INTEGER . ;
The ACTIVEOUT= data set contains a representation of the current active problems in the branch-and-bound tree. The PRIMALOUT= data set contains a representation of the solution to the current problem. These two can be used to restore the procedure to an equivalent state to the one it was in when it stopped.
The results from the call to PROC LP is shown in Output 4.10.1. Notice that the procedure performed 100 iterations and then terminated on maximum integer iterations. This is because, by default, IMAXIT= 100. The procedure reports the current best integer solution.
Output 4.10.1: Output from the HALDI10 Problem
Integer Iteration Log | ||||||||
---|---|---|---|---|---|---|---|---|
Iter | Problem | Condition | Objective | Branched | Value | Sinfeas | Active | Proximity |
1 | 0 | ACTIVE | 18.709524 | x9 | 1.543 | 1.11905 | 2 | . |
2 | 1 | ACTIVE | 18.467723 | x12 | 9.371 | 0.88948 | 3 | . |
3 | 2 | ACTIVE | 18.460133 | x8 | 0.539 | 1.04883 | 4 | . |
4 | -3 | ACTIVE | 18.453638 | x12 | 8.683 | 1.12993 | 5 | . |
5 | 4 | ACTIVE | 18.439678 | x10 | 7.448 | 1.20125 | 6 | . |
6 | 5 | ACTIVE | 18.403728 | x6 | 0.645 | 1.3643 | 7 | . |
7 | -6 | ACTIVE | 18.048289 | x4 | 0.7 | 1.18395 | 8 | . |
8 | -7 | ACTIVE | 17.679087 | x8 | 1.833 | 0.52644 | 9 | . |
9 | 8 | ACTIVE | 17.52 | x10 | 6.667 | 0.70111 | 10 | . |
10 | 9 | ACTIVE | 17.190085 | x12 | 7.551 | 1.37615 | 11 | . |
11 | -10 | ACTIVE | 17.02 | x1 | 0.085 | 0.255 | 12 | . |
12 | 11 | ACTIVE | 16.748 | x11 | 0.748 | 0.47 | 13 | . |
13 | -12 | ACTIVE | 16.509091 | x9 | 0.509 | 0.69091 | 14 | . |
14 | 13 | ACTIVE | 16.261333 | x11 | 1.261 | 0.44267 | 15 | . |
15 | 14 | ACTIVE | 16 | x3 | 0.297 | 0.45455 | 16 | . |
16 | 15 | ACTIVE | 16 | x5 | 0.091 | 0.15758 | 16 | . |
17 | -16 | INFEASIBLE | -0.4 | . | . | . | 15 | . |
18 | -15 | ACTIVE | 11.781818 | x10 | 1.782 | 0.37576 | 15 | . |
19 | 18 | ACTIVE | 11 | x5 | 0.091 | 0.15758 | 15 | . |
20 | -19 | INFEASIBLE | -6.4 | . | . | . | 14 | . |
21 | -14 | ACTIVE | 11.963636 | x5 | 0.182 | 0.28485 | 14 | . |
22 | -21 | INFEASIBLE | -4.4 | . | . | . | 13 | . |
23 | -13 | ACTIVE | 15.281818 | x10 | 4.282 | 0.52273 | 13 | . |
24 | 23 | ACTIVE | 15.041333 | x5 | 0.095 | 0.286 | 14 | . |
25 | -24 | INFEASIBLE | -2.9 | . | . | . | 13 | . |
26 | 24 | INFEASIBLE | 14 | . | . | . | 12 | . |
27 | 12 | ACTIVE | 16 | x3 | 0.083 | 0.15 | 13 | . |
28 | -27 | ACTIVE | 15.277778 | x9 | 0.278 | 0.34444 | 14 | . |
29 | -28 | ACTIVE | 13.833333 | x10 | 3.833 | 0.23333 | 14 | . |
30 | 29 | ACTIVE | 13 | x2 | 0.4 | 0.4 | 15 | . |
31 | 30 | INFEASIBLE | 12 | . | . | . | 14 | . |
32 | -30 | SUBOPTIMAL | 10 | . | . | . | 13 | 8 |
33 | 28 | ACTIVE | 15 | x2 | 0.067 | 0.06667 | 13 | 8 |
34 | -33 | SUBOPTIMAL | 12 | . | . | . | 12 | 6 |
35 | 27 | ACTIVE | 15 | x2 | 0.067 | 0.06667 | 12 | 6 |
36 | -35 | SUBOPTIMAL | 15 | . | . | . | 11 | 3 |
37 | -11 | FATHOMED | 14.275 | . | . | . | 10 | 3 |
38 | 10 | ACTIVE | 16.804848 | x1 | 0.158 | 0.50313 | 11 | 3 |
39 | -38 | FATHOMED | 14.784 | . | . | . | 10 | 3 |
40 | 38 | ACTIVE | 16.40381 | x11 | 1.404 | 0.68143 | 11 | 3 |
41 | -40 | ACTIVE | 16.367677 | x10 | 5.368 | 0.69949 | 12 | 3 |
42 | 41 | ACTIVE | 16.113203 | x11 | 2.374 | 1.00059 | 12 | 3 |
43 | 42 | ACTIVE | 16 | x5 | 0.182 | 0.33182 | 12 | 3 |
44 | -43 | FATHOMED | 13.822222 | . | . | . | 11 | 3 |
45 | -41 | FATHOMED | 12.642424 | . | . | . | 10 | 3 |
46 | 40 | ACTIVE | 16 | x5 | 0.229 | 0.37857 | 10 | 3 |
47 | 46 | FATHOMED | 15 | . | . | . | 9 | 3 |
48 | -9 | ACTIVE | 17.453333 | x7 | 0.453 | 0.64111 | 10 | 3 |
49 | 48 | ACTIVE | 17.35619 | x11 | 0.356 | 0.53857 | 11 | 3 |
50 | 49 | ACTIVE | 17 | x5 | 0.121 | 0.27143 | 12 | 3 |
51 | 50 | ACTIVE | 17 | x3 | 0.083 | 0.15 | 13 | 3 |
52 | -51 | FATHOMED | 15.933333 | . | . | . | 12 | 3 |
53 | 51 | ACTIVE | 16 | x2 | 0.067 | 0.06667 | 12 | 3 |
54 | -53 | SUBOPTIMAL | 16 | . | . | . | 8 | 2 |
55 | -8 | ACTIVE | 17.655399 | x12 | 7.721 | 0.56127 | 9 | 2 |
56 | 55 | ACTIVE | 17.519375 | x10 | 6.56 | 0.76125 | 10 | 2 |
57 | 56 | ACTIVE | 17.256874 | x2 | 0.265 | 0.67388 | 11 | 2 |
58 | 57 | INFEASIBLE | 17.167622 | . | . | . | 10 | 2 |
59 | -57 | FATHOMED | 16.521755 | . | . | . | 9 | 2 |
60 | -56 | FATHOMED | 17.03125 | . | . | . | 8 | 2 |
61 | -55 | ACTIVE | 17.342857 | x9 | 0.343 | 0.50476 | 8 | 2 |
62 | 61 | ACTIVE | 17.2225 | x7 | 0.16 | 0.37333 | 9 | 2 |
63 | 62 | ACTIVE | 17.1875 | x8 | 2.188 | 0.33333 | 9 | 2 |
64 | 63 | ACTIVE | 17.153651 | x11 | 0.154 | 0.30095 | 10 | 2 |
65 | -64 | FATHOMED | 12.381818 | . | . | . | 9 | 2 |
66 | 64 | ACTIVE | 17 | x2 | 0.133 | 0.18571 | 9 | 2 |
67 | -66 | FATHOMED | 13 | . | . | . | 8 | 2 |
68 | -62 | FATHOMED | 14.2 | . | . | . | 7 | 2 |
69 | 7 | FATHOMED | 15.428583 | . | . | . | 6 | 2 |
70 | 6 | FATHOMED | 16.75599 | . | . | . | 5 | 2 |
71 | -5 | ACTIVE | 17.25974 | x6 | 0.727 | 0.82078 | 5 | 2 |
72 | -71 | FATHOMED | 17.142857 | . | . | . | 4 | 2 |
73 | -4 | ACTIVE | 18.078095 | x4 | 0.792 | 0.70511 | 5 | 2 |
74 | -73 | ACTIVE | 17.662338 | x10 | 7.505 | 0.91299 | 5 | 2 |
75 | 74 | ACTIVE | 17.301299 | x9 | 0.301 | 0.57489 | 5 | 2 |
76 | 75 | ACTIVE | 17.210909 | x7 | 0.211 | 0.47697 | 5 | 2 |
77 | 76 | FATHOMED | 17.164773 | . | . | . | 4 | 2 |
78 | 73 | FATHOMED | 12.872727 | . | . | . | 3 | 2 |
79 | 3 | ACTIVE | 18.368316 | x10 | 7.602 | 1.20052 | 4 | 2 |
80 | 79 | ACTIVE | 18.198323 | x7 | 1.506 | 1.85351 | 5 | 2 |
81 | 80 | ACTIVE | 18.069847 | x12 | 8.517 | 1.67277 | 6 | 2 |
82 | -81 | ACTIVE | 17.910909 | x4 | 0.7 | 0.73015 | 7 | 2 |
83 | -82 | ACTIVE | 17.790909 | x7 | 0.791 | 0.54015 | 8 | 2 |
84 | -83 | ACTIVE | 17.701299 | x9 | 0.701 | 0.62229 | 8 | 2 |
85 | 84 | ACTIVE | 17.17619 | x6 | 0.818 | 0.45736 | 8 | 2 |
86 | -85 | ACTIVE | 17.146667 | x11 | 0.147 | 0.24333 | 8 | 2 |
87 | 86 | ACTIVE | 17 | x1 | 0.167 | 0.16667 | 8 | 2 |
88 | 87 | INFEASIBLE | 16 | . | . | . | 7 | 2 |
89 | 83 | ACTIVE | 17.58 | x11 | 0.58 | 0.73788 | 8 | 2 |
90 | -89 | FATHOMED | 17.114286 | . | . | . | 7 | 2 |
91 | -80 | ACTIVE | 18.044048 | x12 | 8.542 | 1.71158 | 8 | 2 |
92 | 91 | ACTIVE | 17.954536 | x11 | 0.477 | 1.90457 | 9 | 2 |
93 | 92 | ACTIVE | 17.875084 | x4 | 0.678 | 1.16624 | 10 | 2 |
94 | 93 | FATHOMED | 13.818182 | . | . | . | 9 | 2 |
95 | -93 | ACTIVE | 17.231221 | x6 | 0.727 | 0.76182 | 9 | 2 |
96 | -95 | FATHOMED | 17.085714 | . | . | . | 8 | 2 |
97 | -92 | FATHOMED | 17.723058 | . | . | . | 7 | 2 |
98 | -91 | FATHOMED | 16.378788 | . | . | . | 6 | 2 |
99 | 89 | ACTIVE | 17 | x6 | 0.818 | 0.26515 | 6 | 2 |
100 | -99 | ACTIVE | 17 | x3 | 0.083 | 0.08333 | 6 | 2 |
WARNING: The maximum number of integer iterations has been exceeded. Increase this limit with the 'IMAXIT=' option on the RESET statement.
Solution Summary | |
---|---|
Terminated on Maximum Integer Iterations Integer Feasible Solution |
|
Objective Value | 16 |
Phase 1 Iterations | 0 |
Phase 2 Iterations | 13 |
Phase 3 Iterations | 161 |
Integer Iterations | 100 |
Integer Solutions | 4 |
Initial Basic Feasible Variables | 12 |
Time Used (seconds) | 0 |
Number of Inversions | 37 |
Epsilon | 1E-8 |
Infinity | 1.797693E308 |
Maximum Phase 1 Iterations | 100 |
Maximum Phase 2 Iterations | 100 |
Maximum Phase 3 Iterations | 99999999 |
Maximum Integer Iterations | 100 |
Time Limit (seconds) | 120 |
Variable Summary | ||||||
---|---|---|---|---|---|---|
Col | Variable Name | Status | Type | Price | Activity | Reduced Cost |
1 | x1 | DEGEN | BINARY | 0 | 0 | 0 |
2 | x2 | ALTER | BINARY | 0 | 1 | 0 |
3 | x3 | BINARY | 0 | 0 | 12 | |
4 | x4 | ALTER | BINARY | 0 | 1 | 0 |
5 | x5 | ALTER | BINARY | 0 | 0 | 0 |
6 | x6 | ALTER | BINARY | 0 | 1 | 0 |
7 | x7 | INTEGER | 1 | 0 | 1 | |
8 | x8 | INTEGER | 1 | 1 | 1 | |
9 | x9 | DEGEN | INTEGER | 1 | 0 | 0 |
10 | x10 | INTEGER | 1 | 7 | 1 | |
11 | x11 | INTEGER | 1 | 0 | 1 | |
12 | x12 | INTEGER | 1 | 8 | 1 | |
13 | _OBS2_ | BASIC | SLACK | 0 | 15 | 0 |
14 | _OBS3_ | BASIC | SLACK | 0 | 2 | 0 |
15 | _OBS4_ | BASIC | SLACK | 0 | 7 | 0 |
16 | _OBS5_ | BASIC | SLACK | 0 | 2 | 0 |
17 | _OBS6_ | ALTER | SLACK | 0 | 0 | 0 |
18 | _OBS7_ | BASIC | SLACK | 0 | 14 | 0 |
19 | _OBS8_ | SLACK | 0 | 0 | -1 | |
20 | _OBS9_ | BASIC | SLACK | 0 | 3 | 0 |
21 | _OBS10_ | DEGEN | SLACK | 0 | 0 | 0 |
22 | _OBS11_ | BASIC | SLACK | 0 | 3 | 0 |
Constraint Summary | ||||||
---|---|---|---|---|---|---|
Row | Constraint Name | Type | S/S Col | Rhs | Activity | Dual Activity |
1 | _OBS1_ | OBJECTVE | . | 0 | 16 | . |
2 | _OBS2_ | LE | 13 | 110 | 95 | 0 |
3 | _OBS3_ | LE | 14 | 95 | 93 | 0 |
4 | _OBS4_ | LE | 15 | 80 | 73 | 0 |
5 | _OBS5_ | LE | 16 | 100 | 98 | 0 |
6 | _OBS6_ | LE | 17 | 0 | 0 | 0 |
7 | _OBS7_ | LE | 18 | 0 | -14 | 0 |
8 | _OBS8_ | LE | 19 | 0 | 0 | 1 |
9 | _OBS9_ | LE | 20 | 0 | -3 | 0 |
10 | _OBS10_ | LE | 21 | 0 | 0 | 0 |
11 | _OBS11_ | LE | 22 | 0 | -3 | 0 |
To continue with the solution of this problem, invoke PROC LP with the ACTIVEIN= and PRIMALIN= options and reset the IMAXIT= option. This restores the branch-and-bound tree and simplifies calculating a basic feasible solution from which to start processing.
proc lp data=haldi10 activein=a primalin=p imaxit=250; run;
The procedure picks up iterating from a equivalent state to where it left off. The problem will still not be solved when IMAXIT= 250 occurs.