| Functions and CALL Routines |
| Category: | Probability |
| Alias: | PMF |
Syntax |
| PDF (dist,quantile<,parm-1, ... ,parm-k>) |
is a character constant, variable, or expression that identifies the distribution. Valid distributions are as follows:
Note: Except for T, F, and NORMALMIX,
you can minimally identify any distribution by its first four characters. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
is a numeric constant, variable, or expression that specifies the value of the random variable.
are optional numeric constants, variables, or expressions that specify the values of shape, location, or scale parameters that are appropriate for the specific distribution.
| See: | Details for complete information about these parameters |
| Details |
Syntax |
| PDF('BERNOULLI',x,p) |
The PDF function for the Bernoulli distribution returns the probability density function of a Bernoulli distribution, with probability of success equal to p. The PDF function is evaluated at the value x. The equation follows:
![[equation]](images/deqn128.gif)
Note: There are no location or scale parameters for this distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
| PDF('BETA',x,a,b<,l,r>) |
| Range: | a > 0 |
| Range: | b > 0 |
is the numeric left location parameter.
| Default: | 0 |
is the right location parameter.
| Default: | 0 |
| Range: | r > l |
The PDF function for the beta distribution returns the probability density function of a beta distribution, with shape parameters a and b. The PDF function is evaluated at the value x. The equation follows:
![[equation]](images/deqn129.gif)
Note: The quantity
is forced to be
. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
| PDF('BINOMIAL',m,p,n) |
is an integer random variable that counts the number of successes.
| Range: | m = 0, 1, ... |
is a numeric probability of success.
| Range: |
0 p
1 |
is an integer parameter that counts the number of independent Bernoulli trials.
| Range: | n = 0, 1, ... |
The PDF function for the binomial distribution returns the probability density function of a binomial distribution, with parameters p and n, which is evaluated at the value m. The equation follows:
![[equation]](images/deqn130.gif)
Note: There are no location or scale parameters for the binomial distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
PDF('CAUCHY',x<, , >)
|
The PDF function for the Cauchy distribution returns
the probability density function of a Cauchy distribution, with the location
parameter
and the scale parameter
. The PDF function is evaluated
at the value x. The equation follows:
![[equation]](images/deqn131.gif)
Syntax |
| PDF('CHISQUARE',x,df <,nc>) |
is a numeric degrees of freedom parameter.
| Range: | df > 0 |
is an optional numeric non-centrality parameter.
| Range: |
nc 0 |
The PDF function for the chi-square distribution returns the probability density function of a chi-square distribution, with df degrees of freedom and non-centrality parameter nc. The PDF function is evaluated at the value x. This function accepts non-integer degrees of freedom. If nc is omitted or equal to zero, the value returned is from the central chi-square distribution. The following equation describes the PDF function of the chi-square distribution,
![[equation]](images/deqn132.gif)
![[equation]](images/deqn133.gif)
![[equation]](images/deqn134.gif)
Syntax |
PDF('EXPONENTIAL',x
<, >)
|
The PDF function for the exponential distribution
returns
the probability density function of an exponential distribution, with the
scale parameter
. The PDF function is evaluated at the value x. The equation follows:
![[equation]](images/deqn135.gif)
Syntax |
| PDF('F',x,ndf,ddf<,nc>) |
is a numeric numerator degrees of freedom parameter.
| Range: | ndf > 0 |
is a numeric denominator degrees of freedom parameter.
| Range: | ddf > 0 |
is a numeric non-centrality parameter.
| Range: |
nc 0 |
The PDF function for the F distribution returns the probability density function of an F distribution, with ndf numerator degrees of freedom, ddf denominator degrees of freedom, and non-centrality parameter nc. The PDF function is evaluated at the value x. This PDF function accepts non-integer degrees of freedom for ndf and ddf. If nc is omitted or equal to zero, the value returned is from a central F distribution. In the following equation, let $\nu_1$ = ndf, let $\nu_2$ = ddf, and let $\lambda$ = nc. The following equation describes the PDF function of the F distribution.
![[equation]](images/deqn136.gif)
![[equation]](images/deqn137.gif)
Note: There are no location or scale parameters for the F distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
PDF('GAMMA',x,a<, >)
|
The PDF function for the gamma distribution returns
the probability density function of a gamma distribution, with the shape
parameter a and the scale parameter
. The PDF function
is evaluated at the value x. The equation follows:
![[equation]](images/deqn138.gif)
Syntax |
| PDF('GEOMETRIC',m,p) |
is a numeric random variable that denotes the number of failures before the first success.
| Range: |
m 0 |
is a numeric probability of success.
| Range: |
0 p
1 |
The PDF function for the geometric distribution returns the probability density function of a geometric distribution, with parameter p. The PDF function is evaluated at the value m. The equation follows:
![[equation]](images/deqn139.gif)
Note: There are no location or scale parameters for this distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
| PDF('HYPER',x,N,R,n<,o>) |
is an integer population size parameter.
| Range: | N = 1, 2, ... |
is an integer number of items in the category of interest.
| Range: | R = 0, 1, ..., N |
is an integer sample size parameter.
| Range: | n = 1, 2, ..., N |
is an optional numeric odds ratio parameter.
| Range: | o > 0 |
The PDF function for the hypergeometric distribution returns the probability density function of an extended hypergeometric distribution, with population size N, number of items R, sample size n, and odds ratio o. The PDF function is evaluated at the value x. If o is omitted or equal to 1, the value returned is from the usual hypergeometric distribution. The equation follows:
![[equation]](images/deqn140.gif)
Syntax |
PDF('LAPLACE',x<, , >)
|
The PDF function for the Laplace distribution returns
the probability density function of the Laplace distribution, with the location
parameter
and the scale parameter
. The PDF function is evaluated
at the value x. The equation follows:
![[equation]](images/deqn141.gif)
Syntax |
PDF('LOGISTIC',x<, , >)
|
The PDF function for the logistic distribution
returns
the probability density function of a logistic distribution, with the location
parameter
and the scale parameter
. The PDF function is evaluated
at the value x. The equation follows:
![[equation]](images/deqn142.gif)
Syntax |
PDF('LOGNORMAL',x<, , >)
|
![[thetas]](../../../../common/63294/HTML/default/images/thetal.gif)
specifies a numeric log scale parameter.
(exp(
) is a scale parameter.)
| Default: | 0 |
![[lambda]](../../../../common/63294/HTML/default/images/lambdal.gif)
specifies a numeric shape parameter.
| Default: | 1 |
| Range: |
> 0 |
The PDF function for the lognormal distribution returns the probability
density function of a lognormal distribution, with the log scale parameter
and the shape parameter
. The PDF function is evaluated
at the value x. The equation follows:
![[equation]](images/deqn143.gif)
Syntax |
| PDF('NEGBINOMIAL',m,p,n) |
is a positive integer random variable that counts the number of failures.
| Range: | m= 0, 1, ... |
is a numeric probability of success.
| Range: |
0 p
1 |
is a numeric value that counts the number of successes.
| Range: | n > 0 |
The PDF function for the negative binomial distribution returns the probability density function of a negative binomial distribution, with probability of success p and number of successes n. The PDF function is evaluated at the value m. The equation follows:
![[equation]](images/deqn144.gif)
Note: There are no location or scale parameters for the negative binomial distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
PDF('NORMAL',x<, , >)
|
The PDF function for the normal distribution returns
the probability density function of a normal distribution, with the location
parameter
and the scale parameter
. The PDF function is
evaluated at the value x. The equation follows:
![[equation]](images/deqn145.gif)
Syntax |
| PDF('NORMALMIX',x,n,p,m,s) |
is the integer number of mixtures.
| Range: | n = 1, 2, ... |
is the n proportions,
, where
.
| Range: | p = 0, 1, ... |
is the n standard deviations
.
| Range: | s > 0 |
The PDF function for the normal mixture distribution returns the probability that an observation from a mixture of normal distribution is less than or equal to x. The equation follows:
![[equation]](images/deqn146.gif)
Note: There are no location or scale parameters for the normal mixture distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
| PDF('PARETO',x,a<,k>) |
The PDF function for the Pareto distribution returns the probability density function of a Pareto distribution, with the shape parameter a and the scale parameter k. The PDF function is evaluated at the value x. The equation follows:
![[equation]](images/deqn147.gif)
Syntax |
| PDF('POISSON',n,m) |
The PDF function for the Poisson distribution returns the probability density function of a Poisson distribution, with mean m. The PDF function is evaluated at the value n. The equation follows:
![[equation]](images/deqn148.gif)
Note: There are no location or scale parameters for the Poisson distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
| PDF('T',t,df<,nc>) |
The PDF function for the T distribution returns the probability density function of a T distribution, with degrees of freedom df and non-centrality parameter nc. The PDF function is evaluated at the value x. This PDF function accepts non-integer degrees of freedom. If nc is omitted or equal to zero, the value returned is from the central T distribution. In the following equation, let $\nu$ = df and let $\delta$ = nc.
![[equation]](images/deqn149.gif)
Note: There are no location or scale parameters for the T distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
| PDF('UNIFORM',x<,l,r>) |
is the numeric left location parameter.
| Default: | 0 |
is the numeric right location parameter.
| Default: | 1 |
| Range: | r > l |
The PDF function for the uniform distribution returns the probability density function of a uniform distribution, with the left location parameter l and the right location parameter r. The PDF function is evaluated at the value x. The equation follows:
![[equation]](images/deqn150.gif)
Syntax |
| PDF('WALD',x,d) |
| PDF('IGAUSS',x,d) |
The PDF function for the Wald distribution returns the probability density function of a Wald distribution, with shape parameter d, which is evaluated at the value x. The equation follows:
![[equation]](images/deqn151.gif)
Note: There are no location or scale parameters for the Wald distribution. ![[cautionend]](../../../../common/63294/HTML/default/images/cautend.gif)
Syntax |
PDF('WEIBULL',x,a<, >)
|
The PDF function for the Weibull distribution returns
the probability density function of a Weibull distribution, with the shape
parameter a and the scale parameter
. The PDF function
is evaluated at the value x. The equation follows:
![[equation]](images/deqn152.gif)
| Examples |
| See Also |
|
Functions: |
Copyright © 2011 by SAS Institute Inc., Cary, NC, USA. All rights reserved.