In the following example, the log-likelihood function of the SSM is computed by using prediction error decomposition. The annual real GNP series, , can be decomposed as
where is a trend component and is a white noise error with . Refer to Nelson and Plosser (1982) for more details about these data. The trend component is assumed to be generated from the following stochastic equations:
where and are independent white noise disturbances with and .
It is straightforward to construct the SSM of the real GNP series.
where
When the observation noise is normally distributed, the average log-likelihood function of the SSM is
where is the mean square error matrix of the prediction error , such that .
The LIK module computes the average log-likelihood function. First, the average log-likelihood function is computed by using the default initial values: Z0=0 and VZ0=I. The second call of module LIK produces the average log-likelihood function with the given initial conditions: Z0=0 and VZ0=I. You can notice a sizable difference between the uncertain initial condition (VZ0=I) and the almost deterministic initial condition (VZ0=I) in Output 13.2.1.
Finally, the first 15 observations of one-step predictions, filtered values, and real GNP series are produced under the moderate initial condition (VZ0=I). The data are the annual real GNP for the years 1909 to 1969. Here is the code:
title 'Likelihood Evaluation of SSM'; title2 'DATA: Annual Real GNP 1909-1969'; data gnp; input y @@; datalines; 116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3 135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5 179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2 141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2 263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7 324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1 452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1 617.8 658.1 675.2 706.6 724.7 ; run;
proc iml; start lik(y,a,b,f,h,var,z0,vz0); nz = nrow(f); n = nrow(y); k = ncol(y); const = k*log(8*atan(1)); if ( sum(z0 = .) | sum(vz0 = .) ) then call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var); else call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0); et = y - pred*h`; sum1 = 0; sum2 = 0; do i = 1 to n; vpred_i = vpred[(i-1)*nz+1:i*nz,]; et_i = et[i,]; ft = h*vpred_i*h` + var[nz+1:nz+k,nz+1:nz+k]; sum1 = sum1 + log(det(ft)); sum2 = sum2 + et_i*inv(ft)*et_i`; end; return(-.5*const-.5*(sum1+sum2)/n); finish; use gnp; read all var {y}; close gnp; f = {1 1, 0 1}; h = {1 0}; a = j(nrow(f),1,0); b = j(nrow(h),1,0); var = diag(j(1,nrow(f)+ncol(y),1e-3)); /*-- initial values are computed --*/ z0 = j(1,nrow(f),.); vz0 = j(nrow(f),nrow(f),.); logl = lik(y,a,b,f,h,var,z0,vz0); print 'No initial values are given', logl; /*-- initial values are given --*/ z0 = j(1,nrow(f),0); vz0 = 1e-3#i(nrow(f)); logl = lik(y,a,b,f,h,var,z0,vz0); print 'Initial values are given', logl; z0 = j(1,nrow(f),0); vz0 = 10#i(nrow(f)); call kalcvf(pred0,vpred,filt0,vfilt,y,1,a,f,b,h,var,z0,vz0); y0 = y; free y; y = j(16,1,0); pred = j(16,2,0); filt = j(16,2,0); do i=1 to 16; y[i] = y0[i]; pred[i,] = pred0[i,]; filt[i,] = filt0[i,]; end; print y pred filt; quit;
Output 13.2.1: Average Log Likelihood of SSM
Likelihood Evaluation of SSM |
DATA: Annual Real GNP 1909-1969 |
No initial values are given |
logl |
---|
-26313.74 |
Initial values are given |
logl |
---|
-91883.49 |
Output 13.2.2 shows the observed data, the predicted state vectors, and the filtered state vectors for the first 16 observations.
Output 13.2.2: Filtering and One-Step Prediction
y | pred | filt | ||
---|---|---|---|---|
116.8 | 0 | 0 | 116.78832 | 0 |
120.1 | 116.78832 | 0 | 120.09967 | 3.3106857 |
123.2 | 123.41035 | 3.3106857 | 123.22338 | 3.1938303 |
130.2 | 126.41721 | 3.1938303 | 129.59203 | 4.8825531 |
131.4 | 134.47459 | 4.8825531 | 131.93806 | 3.5758561 |
125.6 | 135.51391 | 3.5758561 | 127.36247 | -0.610017 |
124.5 | 126.75246 | -0.610017 | 124.90123 | -1.560708 |
134.3 | 123.34052 | -1.560708 | 132.34754 | 3.0651076 |
135.2 | 135.41265 | 3.0651076 | 135.23788 | 2.9753526 |
151.8 | 138.21324 | 2.9753526 | 149.37947 | 8.7100967 |
146.4 | 158.08957 | 8.7100967 | 148.48254 | 3.7761324 |
139 | 152.25867 | 3.7761324 | 141.36208 | -1.82012 |
127.8 | 139.54196 | -1.82012 | 129.89187 | -6.776195 |
147 | 123.11568 | -6.776195 | 142.74492 | 3.3049584 |
165.9 | 146.04988 | 3.3049584 | 162.36363 | 11.683345 |
165.5 | 174.04698 | 11.683345 | 167.02267 | 8.075817 |