The QLIM Procedure

Limited Dependent Variable Models

Censored Regression Models

When the dependent variable is censored, values in a certain range are all transformed to a single value. For example, the standard tobit model can be defined as

\[  y^{*}_{i} = \mathbf{x}_{i}’\bbeta + \epsilon _{i}  \]
\[  y_{i} = \left\{  \begin{array}{ll} y^{*}_{i} &  \mr {if} y^{*}_{i}>0 \\ 0 &  \mr {if} y^{*}_{i}\leq 0 \end{array} \right.  \]

where $\epsilon _{i} \sim iid N(0,\sigma ^{2})$. The log-likelihood function of the standard censored regression model is

\[  \ell = \sum _{i\in \{ y_{i}=0\} }\ln [1-\Phi (\mathbf{x}_{i}’\bbeta /\sigma )] +\sum _{i\in \{ y_{i}>0\}  } \ln \left[\phi (\frac{y_{i}-\mathbf{x}_{i}\bbeta }{\sigma })/\sigma \right]  \]

where $\Phi (\cdot )$ is the cumulative density function of the standard normal distribution and $\phi (\cdot )$ is the probability density function of the standard normal distribution.

The tobit model can be generalized to handle observation-by-observation censoring. The censored model on both of the lower and upper limits can be defined as

\[  y_{i} = \left\{  \begin{array}{ll} R_{i} &  \mr {if} \;  y_{i}^{*} \geq R_{i} \\ y_{i}^{*} &  \mr {if} \;  L_{i} < y_{i}^{*} < R_{i} \\ L_{i} &  \mr {if} \;  y_{i}^{*} \leq L_{i} \end{array} \right.  \]

The log-likelihood function can be written as

$\displaystyle  \ell  $
$\displaystyle  =  $
$\displaystyle  \sum _{i\in \{ L_{i}< y_{i} < R_{i}\}  } \ln \left[\phi (\frac{y_{i}-\mathbf{x}_{i}\bbeta }{\sigma })/\sigma \right] + \sum _{i\in \{ y_{i}=R_{i}\} } \ln \left[\Phi (-\frac{R_{i}-\mathbf{x}_{i}\bbeta }{\sigma })\right] +  $
$\displaystyle  $
$\displaystyle  $
$\displaystyle  \sum _{i\in \{ y_{i}=L_{i}\} } \ln \left[\Phi (\frac{L_{i}-\mathbf{x}_{i}\bbeta }{\sigma })\right]  $

Log-likelihood functions of the lower- or upper-limit censored model are easily derived from the two-limit censored model. The log-likelihood function of the lower-limit censored model is

\[  \ell = \sum _{i\in \{ y_{i} > L_{i}\} } \ln \left[\phi (\frac{y_{i}-\mathbf{x}_{i}\bbeta }{\sigma })/\sigma \right] + \sum _{i\in \{ y_{i}=L_{i}\}  } \ln \left[\Phi (\frac{L_{i}-\mathbf{x}_{i}\bbeta }{\sigma })\right]  \]

The log-likelihood function of the upper-limit censored model is

\[  \ell = \sum _{i\in \{ y_{i} < R_{i}\}  } \ln \left[\phi (\frac{y_{i}-\mathbf{x}_{i}\bbeta }{\sigma })/\sigma \right] + \sum _{i\in \{ y_{i}=R_{i}\}  } \ln \left[1-\Phi (\frac{R_{i}- \mathbf{x}_{i}\bbeta }{\sigma })\right]  \]

Types of Tobit Models

Amemiya (1984) classified Tobit models into five types based on characteristics of the likelihood function. For notational convenience, let $P$ denote a distribution or density function, $y^{*}_{ji}$ is assumed to be normally distributed with mean $\mathbf{x}_{ji}’\bbeta _{j}$ and variance $\sigma ^{2}_{j}$.

Type 1 Tobit

The Type 1 Tobit model was already discussed in the preceding section.

$\displaystyle  y_{1i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{1i}’\bbeta _{1} + u_{1i}  $
$\displaystyle y_{1i}  $
$\displaystyle  =  $
$\displaystyle  y_{1i}^{*}\; \; \; \textrm{if $y^{*}_{1i} > 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $

The likelihood function is characterized as $P(y_{1} < 0)P(y_{1})$.

Type 2 Tobit

The Type 2 Tobit model is defined as

$\displaystyle  y_{1i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{1i}’\bbeta _{1} + u_{1i}  $
$\displaystyle y_{2i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{2i}’\bbeta _{2} + u_{2i}  $
$\displaystyle y_{1i}  $
$\displaystyle  =  $
$\displaystyle  1 \; \; \; \textrm{if $y_{1i}^{*}>0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y_{1i}^{*}\leq 0$}  $
$\displaystyle y_{2i}  $
$\displaystyle  =  $
$\displaystyle  y_{2i}^{*} \; \; \; \textrm{if $y_{1i}^{*}>0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y_{1i}^{*}\leq 0$}  $

where $(u_{1i},u_{2i}) \sim N(0,\Sigma )$. The likelihood function is described as $P(y_{1} < 0)P(y_{1}>0,y_{2})$.

Type 3 Tobit

The Type 3 Tobit model is different from the Type 2 Tobit in that $y_{1i}^{*}$ of the Type 3 Tobit is observed when $y_{1i}^{*}>0$.

$\displaystyle  y_{1i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{1i}’\bbeta _{1} + u_{1i}  $
$\displaystyle y_{2i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{2i}’\bbeta _{2} + u_{2i}  $
$\displaystyle y_{1i}  $
$\displaystyle  =  $
$\displaystyle  y_{1i}^{*}\; \; \; \textrm{if $y^{*}_{1i} > 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $
$\displaystyle y_{2i}  $
$\displaystyle  =  $
$\displaystyle  y_{2i}^{*}\; \; \; \textrm{if $y^{*}_{1i} > 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $

where $(u_{1i},u_{2i})’\sim iid N(0,\Sigma )$.

The likelihood function is characterized as $P(y_{1} < 0)P(y_{1},y_{2})$.

Type 4 Tobit

The Type 4 Tobit model consists of three equations:

$\displaystyle  y_{1i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{1i}’\bbeta _{1} + u_{1i}  $
$\displaystyle y_{2i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{2i}’\bbeta _{2} + u_{2i}  $
$\displaystyle y_{3i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{3i}’\bbeta _{3} + u_{3i}  $
$\displaystyle y_{1i}  $
$\displaystyle  =  $
$\displaystyle  y_{1i}^{*}\; \; \; \textrm{if $y^{*}_{1i} > 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $
$\displaystyle y_{2i}  $
$\displaystyle  =  $
$\displaystyle  y_{2i}^{*}\; \; \; \textrm{if $y^{*}_{1i} > 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $
$\displaystyle y_{3i}  $
$\displaystyle  =  $
$\displaystyle  y_{3i}^{*}\; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} > 0$}  $

where $(u_{1i},u_{2i},u_{3i})’\sim iid N(0,\Sigma )$. The likelihood function of the Type 4 Tobit model is characterized as $P(y_{1} < 0, y_{3})P(y_{1},y_{2})$.

Type 5 Tobit

The Type 5 Tobit model is defined as follows:

$\displaystyle  y_{1i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{1i}’\bbeta _{1} + u_{1i}  $
$\displaystyle y_{2i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{2i}’\bbeta _{2} + u_{2i}  $
$\displaystyle y_{3i}^{*}  $
$\displaystyle  =  $
$\displaystyle  \mathbf{x}_{3i}’\bbeta _{3} + u_{3i}  $
$\displaystyle y_{1i}  $
$\displaystyle  =  $
$\displaystyle  1\; \; \; \textrm{if $y^{*}_{1i} > 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0\; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $
$\displaystyle y_{2i}  $
$\displaystyle  =  $
$\displaystyle  y_{2i}^{*}\; \; \; \textrm{if $y^{*}_{1i} > 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $
$\displaystyle y_{3i}  $
$\displaystyle  =  $
$\displaystyle  y_{3i}^{*}\; \; \; \textrm{if $y^{*}_{1i} \leq 0$}  $
$\displaystyle  $
$\displaystyle  =  $
$\displaystyle  0 \; \; \; \textrm{if $y^{*}_{1i} > 0$}  $

where $(u_{1i},u_{2i},u_{3i})’$ are from iid trivariate normal distribution. The likelihood function of the Type 5 Tobit model is characterized as $P(y_{1} < 0, y_{3})P(y_{1} > 0, y_{2})$.

Code examples for these models can be found in Types of Tobit Models.

Truncated Regression Models

In a truncated model, the observed sample is a subset of the population where the dependent variable falls in a certain range. For example, when neither a dependent variable nor exogenous variables are observed for $y^{*}_{i} \leq 0$, the truncated regression model can be specified.

\[  \ell = \sum _{i\in \{ y_{i}>0\}  } \left\{  -\ln \Phi (\mathbf{x}_{i}’\bbeta /\sigma ) + \ln \left[\frac{\phi ((y_{i} - \mathbf{x}_{i}\bbeta )/\sigma )}{\sigma } \right] \right\}   \]

Two-limit truncation model is defined as

\[  y_{i} = y_{i}^{*} \mr {if} \;  L_{i} < y_{i}^{*} < R_{i}  \]

The log-likelihood function of the two-limit truncated regression model is

\[  \ell = \sum _{i=1}^{N} \left\{  \ln \left[\phi (\frac{y_{i}-\mathbf{x}_{i}\bbeta }{\sigma })/\sigma \right] - \ln \left[\Phi (\frac{R_{i}-\mb {x}_{i}\bbeta }{\sigma }) - \Phi (\frac{L_{i}-\mb {x}_{i}\bbeta }{\sigma })\right] \right\}   \]

The log-likelihood functions of the lower- and upper-limit truncation model are

$\displaystyle  \ell  $
$\displaystyle  =  $
$\displaystyle  \sum _{i=1}^{N}\left\{  \ln \left[\phi (\frac{y_{i}-\mb {x}_{i}\bbeta }{\sigma }) / \sigma \right] - \ln \left[1 - \Phi (\frac{L_{i}-\mb {x}_{i}\bbeta }{\sigma })\right] \right\}  \; \; \textrm{(lower)}  $
$\displaystyle \ell  $
$\displaystyle  =  $
$\displaystyle  \sum _{i=1}^{N}\left\{  \ln \left[\phi (\frac{y_{i}-\mb {x}_{i}\bbeta }{\sigma }) / \sigma \right] - \ln \left[\Phi (\frac{R_{i}-\mb {x}_{i}\bbeta }{\sigma })\right] \right\}  \; \; \textrm{(upper)}  $