Although rapid development of information technologies in the past decade has provided forecasters with both huge amounts of data and massive computing capabilities, these advancements do not necessarily translate into better forecasts. Different industries and products have unique demand patterns. There is not yet a one-size-fits-all forecasting model or technique. A good forecasting model must be tailored to the data in order to capture the salient features and satisfy the business needs. This paper presents a multistage modeling strategy for demand forecasting. The proposed strategy, which has no restrictions on the forecasting techniques or models, provides a general framework for building a forecasting system in multiple stages.
Pu Wang, SAS
The new and highly anticipated SAS® Output Delivery System (ODS) destination for Microsoft Excel is finally here! Available as a production feature in the third maintenance release of SAS® 9.4 (TS1M3), this new destination generates native Excel (XLSX) files that are compatible with Microsoft Office 2010 or later. This paper is written for anyone, from entry-level programmers to business analysts, who uses the SAS® System and Microsoft Excel to create reports. The discussion covers features and benefits of the new Excel destination, differences between the Excel destination and the older ExcelXP tagset, and functionality that exists in the ExcelXP tagset that is not available in the Excel destination. These topics are all illustrated with meaningful examples. The paper also explains how you can bridge the gap that exists as a result of differences in the functionality between the destination and the tagset. In addition, the discussion outlines when it is beneficial for you to use the Excel destination versus the ExcelXP tagset, and vice versa. After reading this paper, you should be able to make an informed decision about which tool best meets your needs.
Chevell Parker, SAS
This paper presents how Norway, the world's second-largest seafood-exporting country, shares valuable seafood insight using the SAS® Visual Analytics Designer. Three complementary data sources: trade statistics, consumption panel data, and consumer survey data, are used to strengthen the knowledge and understanding about the important markets for seafood, which is a potential competitive advantage for the Norwegian seafood industry. The need for information varies across users and as the amount of data available is growing, the challenge is to make the information available for everyone, everywhere, at any time. Some users are interested in only the latest trade developments, while others working with product innovation are in need of deeper consumer insights. Some have quite advanced analytical skills, while others do not. Thus, one of the most important things is to make the information understandable for everyone, and at the same time provide in-depth insights for the advanced user. SAS Visual Analytics Designer makes it possible to provide both basic reporting and more in-depth analyses on trends and relationships to cover the various needs. This paper demonstrates how the functionality in SAS Visual Analytics Designer is fully used for this purpose, and presents how data from different sources is visualized in SAS Visual Analytics Designer reports located in the SAS® Information Delivery Portal. The main challenges and suggestions for improvements that have been uncovered during the process are also presented in this paper.
Kia Uuskartano, Norwegian Seafood Council
Tor Erik Somby, Norwegian Seafood Council
The surge of data and data sources in marketing has created an analytical bottleneck in most organizations. Analytics departments have been pushed into a difficult decision: either purchase black-box analytical tools to generate efficiencies or hire more analysts, modelers, and data scientists. Knowledge gaps stemming from restrictions in black-box tools or from backlogs in the work of analytical teams have resulted in lost business opportunities. Existing big data analytics tools respond well when dealing with large record counts and small variable counts, but they fall short in bringing efficiencies when dealing with wide data. This paper discusses the importance of an agile modeling engine designed to deliver productivity, irrespective of the size of the data or the complexity of the modeling approach.
Mariam Seirafi, Cornerstone Group of Companies
Nowadays, the recommender system is a popular tool for online retailer businesses to predict customers' next-product-to-buy (NPTB). Based on statistical techniques and the information collected by the retailer, an efficient recommender system can suggest a meaningful NPTB to customers. A useful suggestion can reduce the customer's searching time for a wanted product and improve the buying experience, thus increasing the chance of cross-selling for online retailers and helping them build customer loyalty. Within a recommender system, the combination of advanced statistical techniques with available information (such as customer profiles, product attributes, and popular products) is the key element in using the retailer's database to produce a useful suggestion of an NPTB for customers. This paper illustrates how to create a recommender system with the SAS® RECOMMEND procedure for online business. Using the recommender system, we can produce predictions, compare the performance of different predictive models (such as decision trees or multinomial discrete-choice models), and make business-oriented recommendations from the analysis.
Miao Nie, ABN AMRO Bank
Shanshan Cong, SAS Institute
Even though marketing is inevitable in every business, every year the marketing budget is limited and prudent fund allocations are required to optimize marketing investment. In many businesses, the marketing fund is allocated based on the marketing manager's experience, departmental budget allocation rules, and sometimes 'gut feelings' of business leaders. Those traditional ways of budget allocation yield suboptimal results and in many cases lead to money being wasted on irrelevant marketing efforts. Marketing mixed models can be used to understand the effects of marketing activities and identify the key marketing efforts that drive the most sales among a group of competing marketing activities. The results can be used in marketing budget allocation to take out the guesswork that typically goes into the budget allocation. In this paper, we illustrate practical methods for developing and implementing marketing mixed modeling using SAS® procedures. Real-life challenges of marketing mixed model development and execution are discussed, and several recommendations are provided to overcome some of those challenges.
Delali Agbenyegah, Alliance Data Systems
SAS® Grid Manager, as well as other grid computing technologies, have a set of great capabilities that we, IT professionals, love to have in our systems. This technology increases high availability, allows parallel processing, facilitates increasing demand by scale out, and offers other features that make life better for those managing and using these environments. However, even when business users take advantage of these features, they are more concerned about the business part of the problem. Most of the time business groups hold the budgets and are key stakeholders for any SAS Grid Manager project. Therefore, it is crucial to demonstrate to business users how they will benefit from the new technologies, how the features will improve their daily operations, help them be more efficient and productive, and help them achieve better results. This paper guides you through a process to create a strong and persuasive business plan that translates the technology features from SAS Grid Manager to business benefits.
Marlos Bosso, SAS
Credit card profitability prediction is a complex problem because of the variety of card holders' behavior patterns and the different sources of interest and transactional income. Each consumer account can move to a number of states such as inactive, transactor, revolver, delinquent, or defaulted. This paper i) describes an approach to credit card account-level profitability estimation based on the multistate and multistage conditional probabilities models and different types of income estimation, and ii) compares methods for the most efficient and accurate estimation. We use application, behavioral, card state dynamics, and macroeconomic characteristics, and their combinations as predictors. We use different types of logistic regression such as multinomial logistic regression, ordered logistic regression, and multistage conditional binary logistic regression with the LOGISTIC procedure for states transition probability estimation. The state transition probabilities are used as weights for interest rate and non-interest income models (which one is applied depends on the account state). Thus, the scoring model is split according to the customer behavior segment and the source of generated income. The total income consists of interest and non-interest income. Interest income is estimated with the credit limit utilization rate models. We test and compare five proportion models with the NLMIXED, LOGISTIC, and REG procedures in SAS/STAT® software. Non-interest income depends on the probability of being in a particular state, the two-stage model of conditional probability to make a point-of-sales transaction (POS) or cash withdrawal (ATM), and the amount of income generated by this transaction. We use the LOGISTIC procedure for conditional probability prediction and the GLIMMIX and PANEL procedures for direct amount estimation with pooled and random-effect panel data. The validation results confirm that traditional techniques can be effectively applied to complex tasks with many para
meters and multilevel business logic. The model is used in credit limit management, risk prediction, and client behavior analytics.
Denys Osipenko, the University of Edinburgh Business School
As SAS® programmers, we often develop listings, graphs, and reports that need to be delivered frequently to our customers. We might decide to manually run the program every time we get a request, or we might easily schedule an automatic task to send a report at a specific date and time. Both scenarios have some disadvantages. If the report is manual, we have to find and run the program every time someone request an updated version of the output. It takes some time and it is not the most interesting part of the job. If we schedule an automatic task in Windows, we still sometimes get an email from the customers because they need the report immediately. That means that we have to find and run the program for them. This paper explains how we developed an on-demand report platform using SAS® Enterprise Guide®, SAS® Web Application Server, and stored processes. We had developed many reports for different customer groups, and we were getting more and more emails from them asking for updated versions of their reports. We felt we were not using our time wisely and decided to create an infrastructure where users could easily run their programs through a web interface. The tool that we created enables SAS programmers to easily release on-demand web reports with minimum programming. It has web interfaces developed using stored processes for the administrative tasks, and it also automatically customizes the front end based on the user who connects to the website. One of the challenges of the project was that certain reports had to be available to a specific group of users only.
Romain Miralles, Genomic Health
Many organizations need to report forecasts of large numbers of time series at various levels of aggregation. Numerous model-based forecasts that are statistically generated at the lowest level of aggregation need to be combined to form an aggregate forecast that is not required to follow a fixed hierarchy. The forecasts need to be dynamically aggregated according to any subset of the time series, such as from a query. This paper proposes a technique for large-scale automatic forecast aggregation and uses SAS® Forecast Server and SAS/ETS® software to demonstrate this technique.
Michael Leonard, SAS
As Data Management professionals, you have to comply with new regulations and controls. One such regulation is Basel Committee on Banking Supervision (BCBS) 239. To respond to these new demands, you have to put processes and methods in place to automate metadata collection and analysis, and to provide rigorous documentation around your data flows. You also have to deal with many aspects of data management including data access, data manipulation (ETL and other), data quality, data usage, and data consumption, often from a variety of toolsets that are not necessarily from a single vendor. This paper shows you how to use SAS® technologies to support data governance requirements, including third party metadata collection and data monitoring. It highlights best practices such as implementing a business glossary and establishing controls for monitoring data. Attend this session to become familiar with the SAS tools used to meet the new requirements and to implement a more managed environment.
Jeff Stander, SAS
SAS® Embedded Process offers a flexible, efficient way to leverage increasing amounts of data by injecting the processing power of SAS® directly where the data lives. SAS Embedded Process can tap into the massively parallel processing (MPP) architecture of Hadoop for scalable performance. Using SAS® In-Database Technologies for Hadoop, you can run scoring models generated by SAS® Enterprise Miner™ or, with SAS® In-Database Code Accelerator for Hadoop, user-written DS2 programs in parallel. With SAS Embedded Process on Hadoop you can also perform data quality operations, and extract and transform data using SAS® Data Loader. This paper explores key SAS technologies that run inside the Hadoop parallel processing framework and prepares you to get started with them.
David Ghazaleh, SAS
Do you create complex reports using PROC REPORT? Are you confused by the COMPUTE BLOCK feature of PROC REPORT? Are you even aware of it? Maybe you already produce reports using PROC REPORT, but suddenly your boss needs you to modify some of the values in one or more of the columns. Maybe your boss needs to see the values of some rows in boldface and others highlighted in a stylish yellow. Perhaps one of the columns in the report needs to display a variety of fashionable formats (some with varying decimal places and some without any decimals). Maybe the customer needs to see a footnote in specific cells of the report. Well, if this sounds familiar then come take a look at the COMPUTE BLOCK of PROC REPORT. This paper shows a few tips and tricks of using the COMPUTE DEFINE block with conditional IF/THEN logic to make your reports stylish and fashionable. The COMPUTE BLOCK allows you to use data DATA step code within PROC REPORT to provide customization and style to your reports. We'll see how the Census Bureau produces a stylish demographic profile for customers of its Special Census program using PROC REPORT with the COMPUTE BLOCK. The paper focuses on how to use the COMPUTE BLOCK to create this stylish Special Census profile. The paper shows quick tips and simple code to handle multiple formats within the same column, make the values in the Total rows boldface, trafficlighting, and how to add footnotes to any cell based on the column or row. The Special Census profile report is an Excel table created with ODS tagsets.ExcelXP that is stylish and fashionable, thanks in part to the COMPUTE BLOCK.
Chris Boniface, Census Bureau
We introduce age-period-cohort (APC) models, which analyze data in which performance is measured by age of an account, account open date, and performance date. We demonstrate this flexible technique with an example from a recent study that seeks to explain the root causes of the US mortgage crisis. In addition, we show how APC models can predict website usage, retail store sales, salesperson performance, and employee attrition. We even present an example in which APC was applied to a database of tree rings to reveal climate variation in the southwestern United States.
Joseph Breeden, Prescient Models
Analysts find the standard linear regression and analysis-of-variance models to be extremely convenient and useful tools. The standard linear model equation form is observations = (sum of explanatory variables) + residual with the assumptions of normality and homogeneity of variance. However, these tools are unsuitable for non-normal response variables in general. Using various transformations can stabilize the variance. These transformations are often ineffective because they fail to address the skewness problem. It can be complicated to transform the estimates back to their original scale and interpret the results of the analysis. At this point, we reach the limits of the standard linear model. This paper introduces generalized linear models (GzLM) using a systematic approach to adapting linear model methods on non-normal data. Why GzLM? Generalized linear models have greater power to identify model effects as statistically significant when the data are not normally distributed (Stroup, xvii). Unlike the standard linear model, the generalized linear model contains the distribution of the observations, the linear predictor or predictors, the variance function, and the link function. A few examples show how to build a GzLM for a variety of response variables that follows a Poisson, Negative Binomial, Exponential, or Gamma distribution. The SAS/STAT® GENMOD procedure is used to compute basic analyses.
Theresa Ngo, Warner Bros. Entertainment
If your organization already deploys one or more software solutions via Amazon Web Services (AWS), you know the value of the public cloud. AWS provides a scalable public cloud with a global footprint, allowing users access to enterprise software solutions anywhere at any time. Although SAS® began long before AWS was even imagined, many loyal organizations driven by SAS are moving their local SAS analytics into the public AWS cloud, alongside other software hosted by AWS. SAS® Solutions OnDemand has assisted organizations in this transition. In this paper, we describe how we extended our enterprise hosting business to AWS. We describe the open source automation framework from which SAS Soultions onDemand built our automation stack, which simplified the process of migrating a SAS implementation. We'll provide the technical details of our automation and network footprint, a discussion of the technologies we chose along the way, and a list of lessons learned.
Ethan Merrill, SAS
Bryan Harkola, SAS
Project management is a hot topic across many industries, and there are multiple commercial software applications for managing projects available. The reality, however, is that the majority of project management software is not applicable for daily usage. SAS® has a solution for this issue that can be used for managing projects graphically in real time. This paper introduces a new paradigm for project management using the SAS® Graph Template Language (GTL). SAS clients, in real time, can use GTL to visualize resource assignments, task plans, delivery tracking, and project status across multiple project levels for more efficient project management.
Zhouming(Victor) Sun, Medimmune
Contemporary data-collection processes usually involve recording information about the geographic location of each observation. This geospatial information provides modelers with opportunities to examine how the interaction of observations affects the outcome of interest. For example, it is likely that car sales from one auto dealership might depend on sales from a nearby dealership either because the two dealerships compete for the same customers or because of some form of unobserved heterogeneity common to both dealerships. Knowledge of the size and magnitude of the positive or negative spillover effect is important for creating pricing or promotional policies. This paper describes how geospatial methods are implemented in SAS/ETS® and illustrates some ways you can incorporate spatial data into your modeling toolkit.
Guohui Wu, SAS
Jan Chvosta, SAS
The SAS® Scalable Performance Data Server and SAS® Scalable Performance Data Engine are data formats from SAS® that support the creation of analytical base tables with tens of thousands of columns. These analytical base tables are used to support daily predictive analytical routines. Traditionally Storage Area Network (SAN) storage has been and continues to be the primary storage platform for the SAS Scalable Performance Data Server and SAS Scalable Performance Data Engine formats. Due to cost constraints associated with SAN storage, companies have added Hadoop to their environments to help minimize storage costs. In this paper we explore how the SAS Scalable Performance Data Server and SAS Scalable Performance Data Engine leverage the Hadoop Distributed File System.
Steven Sober, SAS
Have you ever wondered how to get the most from Web 2.0 technologies in order to visualize SAS® data? How to make those graphs dynamic, so that users can explore the data in a controlled way, without needing prior knowledge of SAS products or data science? Wonder no more! In this session, you learn how to turn basic sashelp.stocks data into a snazzy HighCharts stock chart in which a user can review any time period, zoom in and out, and export the graph as an image. All of these features with only two DATA steps and one SORT procedure, for 57 lines of SAS code.
Vasilij Nevlev, Analytium Ltd
In the aftermath of the 2008 global financial crisis, banks had to improve their data risk aggregation in order to effectively identify and manage their credit exposures and credit risk, create early warning signs, and improve the ability of risk managers to challenge the business and independently assess and address evolving changes in credit risk. My presentation focuses on using SAS® Credit Risk Dashboard to achieve all of the above. Clearly, you can use my method and principles of building a credit risk dashboard to build other dashboards for other types of risks as well (market, operational, liquidity, compliance, reputation, etc.). In addition, because every bank must integrate the various risks with a holistic view, each of the risk dashboards can be the foundation for building an effective enterprise risk management (ERM) dashboard that takes into account correlation of risks, risk tolerance, risk appetite, breaches of limits, capital allocation, risk-adjusted return on capital (RAROC), and so on. This will support the actions of top management so that the bank can meet shareholder expectations in the long term.
Boaz Galinson, leumi
Real-time, integrated marketing solutions are a necessity for maintaining your competitive advantage. This presentation provides a brief overview of three SAS products (SAS® Marketing Automation, SAS® Real-Time Decision Manager, and SAS® Event Stream Processing) that form a basis for building modern, real-time, interactive marketing solutions. It presents typical (and also possible) customer-use cases that you can implement with a comprehensive real-time interactive marketing solution, in major industries like finance (banking), telco, and retail. It demonstrates typical functional architectures that need to be implemented to support business cases (how solution components collaborate with customer's IT landscape and with each other). And it provides examples of our experience in implementing these solutions--dos and don'ts, best practices, and what to expect from an implementation project.
Dmitriy Alergant, Tier One Analytics
Marje Fecht, Prowerk Consulting
Microsoft Visual Basic Scripting Edition (VBScript) and SAS® software are each powerful tools in their own right. These two technologies can be combined so that SAS code can call a VBScript program or vice versa. This gives a programmer the ability to automate SAS tasks; traverse the file system; send emails programmatically via Microsoft Outlook or SMTP; manipulate Microsoft Word, Microsoft Excel, and Microsoft PowerPoint files; get web data; and more. This paper presents example code to demonstrate each of these capabilities.
Christopher Johnson, BrickStreet Insurance
Considering the fact that SAS® Grid Manager is becoming more and more popular, it is important to fulfill the user's need for a successful migration to a SAS® Grid environment. This paper focuses on key requirements and common issues for new SAS Grid users, especially if they are coming from a traditional environment. This paper describes a few common requirements like the need for a current working directory, the change of file system navigation in SAS® Enterprise Guide® with user-given location, getting job execution summary email, and so on. The GRIDWORK directory has been introduced in SAS Grid Manager, which is a bit different from the traditional SAS WORK location. This paper explains how you can use the GRIDWORK location in a more user-friendly way. Sometimes users experience data set size differences during grid migration. A few important reasons for data set size difference are demonstrated. We also demonstrate how to create new custom scripts as per business needs and how to incorporate them with SAS Grid Manager engine.
Piyush Singh, TATA Consultancy Services Ltd
Tanuj Gupta, TATA Consultancy Services
Prasoon Sangwan, Tata consultancy services limited
Is uniqueness essential for your reports? SAS® Visual Analytics provides the ability to customize your reports to make them unique by using the SAS® Theme Designer. The SAS Theme Designer can be accessed from the SAS® Visual Analytics Hub to create custom themes to meet your branding needs and to ensure a unified look across your company. The report themes affect the colors, fonts, and other elements that are used in tables and graphs. The paper explores how to access SAS Theme Designer from the SAS Visual Analytics home page, how to create and modify report themes that are used in SAS Visual Analytics, how to create report themes from imported custom themes, and how to import and export custom report themes.
Meenu Jaiswal, SAS
Ipsita Samantarai, SAS Research & Development (India) Pvt Ltd
As a result of globalization, the durable goods market has become increasingly competitive, with market conditions that challenge profitability for manufacturers. Moreover, high material costs and the capital-intensive nature of the industry make it essential that companies understand demand signals and utilize supply chain capacity as effectively as possible. To grow and increase profitability under these challenging market conditions, a major durable goods company has partnered with SAS to streamline analysis of pricing and profitability, optimize inventory, and improve service levels to its customers. The price of a product is determined by a number of factors, such as the strategic importance of customers, supply chain costs, market conditions, and competitive prices. Offering promotions is an important part of a marketing strategy; it impacts purchasing behaviors of business customers and end consumers. This paper describes how this company developed a system to analyze product profitability and the impact of promotion on purchasing behaviors of both their business customers and end consumers. This paper also discusses how this company uses integrated demand planning and inventory optimization to manage its complex multi-echelon supply chain. The process uses historical order data to create a statistical forecast of demand, and then optimizes inventory across the supply chain to satisfy the forecast at desired service levels.
VARUNRAJ VALSARAJ, SAS
Bahadir Aral, SAS Institute Inc
Baris Kacar, SAS Institute Inc
Jinxin Yi, SAS Institute Inc
Retailers need critical information about the expected inventory pattern over the life of a product to make pricing, replenishment, and staffing decisions. Hotels rely on booking curves to set rates and staffing levels for future dates. This paper explores a linear state space approach to understanding these industry challenges, applying the SAS/ETS® SSM procedure. We also use the SAS/ETS SIMILARITY procedure to provide additional insight. These advanced techniques help us quantify the relationship between the current inventory level and all previous inventory levels (in the retail case). In the hospitality example, we can evaluate how current total bookings relate to historical booking levels. Applying these procedures can produce valuable new insights about the nature of the retail inventory cycle and the hotel booking curve.
Beth Cubbage, SAS
Business Intelligence users analyze business data in a variety of ways. Seventy percent of business data contains location information. For in-depth analysis, it is essential to combine location information with mapping. New analytical capabilities are added to SAS® Visual Analytics, leveraging the new partnership with Esri, a leader in location intelligence and mapping. The new capabilities enable users to enhance the analytical insights from SAS Visual Analytics. This paper demonstrates and discusses the new partnership with Esri and the new capabilities added to SAS Visual Analytics.
Murali Nori, SAS
Himesh Patel, SAS
For SAS® Enterprise Guide® users, sometimes macro variables and their values need to be brought over to the local workspace from the server, especially when multiple data sets or outputs need to be written to separate files in a local drive. Manually retyping the macro variables and their values in the local workspace after they have been created on the server workspace would be time-consuming and error-prone, especially when we have quite a number of macro variables and values to bring over. Instead, this task can be achieved in an efficient manner by using dictionary tables and the CALL SYMPUT routine, as illustrated in more detail below. The same approach can also be used to bring macro variables and their values from the local to the server workspace.
Khoi To, Office of Planning and Decision Support, Virginia Commonwealth University
Logic model produced propensity scores have been intensively used to assist direct marketing name selections. As a result, only customers with an absolute higher likelihood to respond are mailed offers in order to achieve cost reduction. Thus, event ROI is increased. There is a fly in the ointment, however. Compared to the model building performance time window, usually 6 months to 12 months, a marketing event time period is usually much shorter. As such, this approach lacks of the ability to deselect those who have a high propensity score but are unlikely to respond to an upcoming campaign. To consider dynamically building a complete propensity model for every upcoming camping is nearly impossible. But, incorporating time to respond has been of great interest to marketers to add another dimension for response prediction enhancement. Hence, this paper presents an inventive modeling technique combining logistic regression and the Cox Proportional Hazards Model. The objective of the fusion approach is to allow a customer's shorter next to repurchase time to compensate for his or her insignificant lower propensity score in winning selection opportunities. The method is accomplished using PROC LOGISTIC, PROC LIFETEST, PROC LIFEREF, and PROC PHREG on the fusion model that is building in a SAS® environment. This paper also touches on how to use the results to predict repurchase response by demonstrating a case of repurchase time-shift prediction on the 12-month inactive customers of a big box store retailer. The paper also shares a results comparison between the fusion approach and logit alone. Comprehensive SAS macros are provided in the appendix.
Hsin-Yi Wang, Alliance Data Systems
Business problems have become more stratified and micro-segmentation is driving the need for mass-scale, automated machine learning solutions. Additionally, deployment environments include diverse ecosystems, requiring hundreds of models to be built and deployed quickly via web services to operational systems. The new SAS® automated modeling tool allows you to build and test hundreds of models across all of the segments in your data, testing a wide variety of machine learning techniques. The tool is completely customizable, allowing you transparent access to all modeling results. This paper shows you how to identify hundreds of champion models using SAS® Factory Miner, while generating scoring web services using SAS® Decision Manager. Immediate benefits include efficient model deployments, which allow you to spend more time generating insights that might reveal new opportunities, expose hidden risks, and fuel smarter, well-timed decisions.
Jonathan Wexler, SAS
Steve Sparano, SAS
It is of paramount importance for brand managers to measure and understand consumer brand associations and the mindspace their brand captures. Brands are encoded in memory on a cognitive and emotional basis. Traditionally, brand tracking has been done by surveys and feedback, resulting in a direct communication that covers the cognitive segment and misses the emotional segment. Respondents generally behave differently under observation and in solitude. In this paper, a new brand-tracking technique is proposed that involves capturing public data from social media that focuses more on the emotional aspects. For conceptualizing and testing this approach, we downloaded nearly one million tweets for three major brands--Nike, Adidas, and Reebok--posted by users. We proposed a methodology and calculated metrics (benefits and attributes) using this data for each brand. We noticed that generally emoticons are not used in sentiment mining. To incorporate them, we created a macro that automatically cleans the tweets and replaces emoticons with an equivalent text. We then built supervised and unsupervised models on those texts. The results show that using emoticons improves the efficiency of predicting the polarity of sentiments as the misclassification rate was reduced from 0.31 to 0.24. Using this methodology, we tracked the reactions that are triggered in the minds of customers when they think about a brand and thus analyzed their mind share.
Sharat Dwibhasi, Oklahoma State University
Every day, businesses have to remain vigilant of fraudulent activity, which threatens customers, partners, employees, and financials. Normally, networks of people or groups perpetrate deviant activity. Finding these connections is now made easier for analysts with SAS® Visual Investigator, an upcoming SAS® solution that ultimately minimizes the loss of money and preserves mutual trust among its shareholders. SAS Visual Investigator takes advantage of the capabilities of the new SAS® In-Memory Server. Investigators can efficiently investigate suspicious cases across business lines, which has traditionally been difficult. However, the time required to collect, process and identify emerging fraud and compliance issues has been costly. Making proactive analysis accessible to analysts is now more important than ever. SAS Visual Investigator was designed with this goal in mind and a key component is the visual social network view. This paper discusses how the network analysis view of SAS Visual Investigator, with all its dynamic visual capabilities, can make the investigative process more informative and efficient.
Danielle Davis, SAS
Stephen Boyd, SAS Institute
Ray Ong, SAS Institute
When analyzing data with SAS®, we often encounter missing or null values in data. Missing values can arise from the availability, collectibility, or other issues with the data. They represent the imperfect nature of real data. Under most circumstances, we need to clean, filter, separate, impute, or investigate the missing values in data. These processes can take up a lot of time, and they are annoying. For these reasons, missing values are usually unwelcome and need to be avoided in data analysis. There are two sides to every coin, however. If we can think outside the box, we can take advantage of the negative features of missing values for positive uses. Sometimes, we can create and use missing values to achieve our particular goals in data manipulation and analysis. These approaches can make data analyses convenient and improve work efficiency for SAS programming. This kind of creative and critical thinking is the most valuable quality for data analysts. This paper exploits real-world examples to demonstrate the creative uses of missing values in data analysis and SAS programming, and discusses the advantages and disadvantages of these methods and approaches. The illustrated methods and advanced programming skills can be used in a wide variety of data analysis and business analytics fields.
Justin Jia, Trans Union Canada
Shan Shan Lin, CIBC
You've heard all the talk about SAS® Visual Analytics--but maybe you are still confused about how the product would work in your SAS® environment. Many customers have the same points of confusion about what they need to do with their data, how to get data into the product, how SAS Visual Analytics would benefit them, and even should they be considering Hadoop or the cloud. In this paper, we cover the questions we are asked most often about implementation, administration, and usage of SAS Visual Analytics.
Tricia Aanderud, Zencos Consulting LLC
Ryan Kumpfmiller, Zencos Consulting
Nick Welke, Zencos Consulting
An ad publisher like eBay has multiple ad sources to serve ads from. Specifically, for eBay's text ads, there are two ad sources, viz. eBay Commerce Network (ECN) and Google. The problem and solution we have formulated considers two ad sources. However, the solution can be extended for any number of ad sources. A study was done on performance of ECN and Google ad sources with respect to the revenue per mille (RPM, or revenue per thousand impressions) ad queries they bring while serving ads. It was found that ECN performs better for some ad queries and Google performs better for others. Thus, our problem is to optimally allocate ad traffic between the two ad sources to maximize RPM.
Huma Zaidi, eBay
Chitta Ranjan, GTU
Inspired by Christianna William's paper on transitioning to PROC SQL from the DATA step, this paper aims to help SQL programmers transition to SAS® by using PROC SQL. SAS adapted the Structured Query Language (SQL) by means of PROC SQL back with SAS®6. PROC SQL syntax closely resembles SQL. However, there are some SQL features that are not available in SAS. Throughout this paper, we outline common SQL tasks and how they might differ in PROC SQL. We also introduce useful SAS features that are not available in SQL. Topics covered are appropriate for novice SAS users.
Barbara Ross, NA
Jessica Bennett, Snap Finance
Today, there are 28 million small businesses, which account for 54% of all sales in the United States. The challenge is that small businesses struggle every day to accurately forecast future sales. These forecasts not only drive investment decisions in the business, but also are used in setting daily par, determining labor hours, and scheduling operating hours. In general, owners use their gut instinct. Using SAS® provides the opportunity to develop accurate and robust models that can unlock costs for small business owners in a short amount of time. This research examines over 5,000 records from the first year of daily sales data for a start-up small business, while comparing the four basic forecasting models within SAS® Enterprise Guide®. The objective of this model comparison is to demonstrate how quick and easy it is to forecast small business sales using SAS Enterprise Guide. What does that mean for small businesses? More profit. SAS provides cost-effective models for small businesses to better forecast sales, resulting in better business decisions.
Cameron Jagoe, The University of Alabama
Taylor Larkin, The University of Alabama
Denise McManus, University of Alabama
SAS® software provides many DATA step functions that search and extract patterns from a character string, such as SUBSTR, SCAN, INDEX, TRANWRD, etc. Using these functions to perform pattern matching often requires you to use many function calls to match a character position. However, using the Perl regular expression (PRX) functions or routines in the DATA step improves pattern-matching tasks by reducing the number of function calls and making the program easier to maintain. This talk, in addition to discussing the syntax of Perl regular expressions, demonstrates many real-world applications.
Arthur Li, City of Hope
In a data warehousing system, change data capture (CDC) plays an important part not just in making the data warehouse (DWH) aware of the change but also in providing a means of flowing the change to the DWH marts and reporting tables so that we see the current and latest version of the truth. This and slowly changing dimensions (SCD) create a cycle that runs the DWH and provides valuable insights in the history and for the decision-making future. What if the source has no CDC? It would be an ETL nightmare to identify the exact change and report the absolute truth. If these two processes can be combined into a single process where just one single transform does both jobs of identifying the change and applying the change to the DWH, then we can save significant processing times and value resources of the system. Hence, I came up with a hybrid SCD with CDC approach for this. My paper focuses on sources that DO NOT have CDC in their sources and need to perform SCD Type 2 on such records without worrying about data duplications and increased processing times.
Vishant Bhat, University of Newcastle
Tony Blanch, SAS Consultant
Horizontal data sorting is a very useful SAS® technique in advanced data analysis when you are using SAS programming. Two years ago (SAS® Global Forum Paper 376-2013), we presented and illustrated various methods and approaches to perform horizontal data sorting, and we demonstrated its valuable application in strategic data reporting. However, this technique can also be used as a creative analytic method in advanced business analytics. This paper presents and discusses its innovative and insightful applications in product purchase sequence analyses such as product opening sequence analysis, product affinity analysis, next best offer analysis, time-span analysis, and so on. Compared to other analytic approaches, the horizontal data sorting technique has the distinct advantages of being straightforward, simple, and convenient to use. This technique also produces easy-to-interpret analytic results. Therefore, the technique can have a wide variety of applications in customer data analysis and business analytics fields.
Justin Jia, Trans Union Canada
Shan Shan Lin, CIBC
The success of any marketing promotion is measured by the incremental response and revenue generated by the targeted population known as Test in comparison with the holdout sample known as Control. An unbiased random Test and Control sampling ensures that the incremental revenue is in fact driven by the marketing intervention. However, isolating the true incremental effect of any particular marketing intervention becomes increasingly challenging in the face of overlapping marketing solicitations. This paper demonstrates how a look-alike model can be applied using the GMATCH algorithm on a SAS® platform to design a truly comparable control group to accurately measure and isolate the impact of a specific marketing intervention.
Mou Dutta, Genpact LLC
Arjun Natarajan, Genpact LLC
As credit unions market themselves to increase their market share against the big banks, they understandably focus on gaining new members. However, they must also retain their existing members. Otherwise, the new members they gain can easily be offset by existing members who leave. Happily, by using predictive analytics as described in this paper, keeping (and further engaging) existing members can actually be much easier and less expensive than enlisting new members. This paper provides a step-by-step overview of a relatively simple but comprehensive approach to reduce member attrition. We first prepare the data for a statistical analysis. With some basic predictive analytics techniques, we can then identify those members who have the highest chance of leaving and the highest value. For each of these members, we can also identify why they would leave, thus suggesting the best way to intervene to retain them. We then make suggestions to improve the model for better accuracy. Finally, we provide suggestions to extend this approach to further engaging existing members and thus increasing their lifetime value. This approach can also be applied to many other organizations and industries. Code snippets are shown for any version of SAS® software; they also require SAS/STAT® software.
Nate Derby, Stakana Analytics
Mark Keintz, Wharton Research Data Services
Our company Veikkaus is a state-owned gambling and lottery company in Finland that has a national legalized monopoly for gambling. All the profit we make goes back to Finnish society (for art, sports, science, and culture), and this is done by our government. In addition to the government's requirements of profit, the state (Finland) also requires us to handle the adverse social aspects of gaming, such as problem gambling. The challenge in our business is to balance between these two factors. For the purposes of problem gambling, we have used SAS® tools to create a responsible gaming tool, called VasA, based on a logistic regression model. The name VasA is derived from the Finnish words for 'Responsible Customership.' The model identifies problem gamblers from our customer database using the data from identified gaming, money transfers, web behavior, and customer data. The variables that were used in the model are based on the theory behind the problem gambling. Our actions for problem gambling include, for example, different CRM and personalization of a customer's website in our web service. There were several companies who provided responsible gambling tools as such for us to buy, but we wanted to create our own for two reasons. Firstly, we wanted it to include our whole customer database, meaning all our customers and not just those customers who wanted to take part in it. These other tools normally include only customers who want to take part. The other reason was that we saved a ridiculous amount of money by doing it by ourselves compared to having to buy one. During this process, SAS played a big role, from gathering the data to the construction of the tool, and from modeling to creating the VasA variables, then on to the database, and finally to the analyses and reporting.
Tero Kallioniemi, Veikkaus
This presentation describes the new SAS® Customer Intelligence 360 solution for multi-armed bandit analysis of controlled experiments. Multi-armed bandit analysis has been in existence since the 1950s and is sometimes referred to as the K- or N-armed bandit problem. In this problem, a gambler at a row of slot machines (sometimes known as 'one-armed bandits') has to decide which machines to play, as well as the frequency and order in which to play each machine with the objective of maximizing returns. In practice, multi-armed bandits have been used to model the problem of managing research projects in a large organization. However, the same technology can be applied within the marketing space where, for example, variants of campaign creatives or variants of customer journey sub-paths are compared to better understand customer behavior by collecting their respective response rates. Distribution weights of the variants are adjusted as time passes and conversions are observed to reflect what customers are responding to, thus optimizing the performance of the campaign. The SAS Customer Intelligence 360 analytic engine collects data at regularly scheduled time intervals and processes it through a simulation engine to return an updated weighting schema. The process is automated in the digital space and led through the solution's content serving and execution engine for interactive communication channels. Both marketing gains and costs are studied during the process to illustrate the business value of multi-arm bandit analysis. SAS® has coupled results from traditional A/B testing to feed the multi-armed bandit engine, which are presented.
Thomas Lehman, SAS
Mobile devices are an integral part of a business professional's life. These mobile devices are getting increasingly powerful in terms of processor speeds and memory capabilities. Business users can benefit from a more analytical visualization of the data along with their business context. The new SAS® Mobile BI contains many enhancements that facilitate the use of SAS® Analytics in the newest version of SAS® Visual Analytics. This paper demonstrates how to use the new analytical visualization that has been added to SAS Mobile BI from SAS Visual Analytics, for a richer and more insightful experience for business professionals on the go.
Murali Nori, SAS
Retailers and wholesalers invest heavily in technology, people, processes, and data to create relevant assortments across channels. While technology and vast amounts of data help localize assortments based on consumer preferences, product attributes, and store performance, it's impossible to complete the assortment planning process down to the most granular level of size. The ability to manage millions of size and store combinations is burdensome, not scalable, and not precise. Valuable time and effort is spent creating detailed, insightful assortments only to marginalize those assortments by applying corporate averages of size selling for the purchasing and distribution of sizes to locations. The result is missed opportunity: disappointed customers, lost revenue, and lost profitability due to missing sizes and markdowns on abundant sizes. This paper shows how retailers and wholesalers can transform historical sales data into true size demand and determine the optimal size demand profile to use in the purchasing and allocation of products. You do not need to be a data scientist, statistician, or hold a PhD to augment the business process with approachable analytics and optimization to yield game-changing results!
Donna McGuckin, SAS
This paper discusses a set of practical recommendations for optimizing the performance and scalability of your Hadoop system using SAS®. Topics include recommendations gleaned from actual deployments from a variety of implementations and distributions. Techniques cover tips for improving performance and working with complex Hadoop technologies such as Kerberos, techniques for improving efficiency when working with data, methods to better leverage the SAS in Hadoop components, and other recommendations. With this information, you can unlock the power of SAS in your Hadoop system.
Nancy Rausch, SAS
Wilbram Hazejager, SAS
VBA has been described as a glue language, and has been widely used in exchanging data between Microsoft products such as Excel and Word or PowerPoint. How to trigger the VBA macro from SAS® via DDE has been widely discussed in recent years. However, using SAS to send parameters to a VBA macro was seldom reported. This paper provides a solution for this problem. Copying Excel tables to PowerPoint using the combination of SAS and VBA is illustrated as an example. The SAS program rapidly scans all Excel files that are contained in one folder, passes the file information to VBA as parameters, and triggers the VBA macro to write PowerPoint files in a loop. As a result, a batch of PowerPoint files can be generated by just one mouse-click.
Zhu Yanrong, Medtronic
For marketers who are responsible for identifying the best customer to target in a campaign, it is often daunting to determine which media channel, offer, or campaign program is the one the customer is more apt to respond to, and therefore, is more likely to increase revenue. This presentation examines the components of designing campaigns to identify promotable segments of customers and to target the optimal customers using SAS® Marketing Automation integrated with SAS® Marketing Optimization.
Pamela Dixon, SAS
The Scheduler is an innovative tool that maps linear data (that is, time stamps) to an intuitive three-dimensional representation. This transformation enables the user to identify relationships, conflicts, gaps, and so on, that were not readily apparent in the data's native form. This tool has applications in operations research and litigation-related analyses. This paper discusses why the Scheduler was created, the data that is available to analyze the issue, and how this code can be used in other types of applications. Specifically, this paper discusses how the Scheduler can be used by supervisors to maintain the presence of three or more employees at all times to ensure that all federal- and state- mandated work breaks are taken. Additional examples of the Scheduler include assisting construction foremen to create schedules that visualize the presence of contractors in a logical sequence while eliminating overlap and ensuring cushions of time between contractors and matching items to non-uniform information.
Ariel Kumpinsky, The Claro Group, LLC
Specifying colors based on group value is a quite popular practice in visualizing data, but it is not so easy to do, especially when there are multiple group values. This paper explores three different methods to dynamically assign colors to plots based on their group values. They are combining EVAL and IFN functions in the plot statements; bringing the DISCRETEATTRMAP block into the plot statements; and using the macro from the SAS® sample 40255.
Amos Shu, MedImmune
Someone has aptly said, Las Vegas looks the way one would imagine heaven must look at night. What if you know the secret to run a plethora of various businesses in the entertainment capital of the world? Nothing better, right? Well, we have what you want, all the necessary ingredients for you to precisely know what business to target in a particular locality of Las Vegas. Yelp, a community portal, wants to help people finding great local businesses. They cover almost everything from dentists and hair stylists through mechanics and restaurants. Yelp's users, Yelpers, write reviews and give ratings for all types of businesses. Yelp then uses this data to make recommendations to the Yelpers about which institutions best fit their individual needs. We have the yelp academic data set comprising 1.6 million reviews and 500K tips by 366K in 61K businesses across several cities. We combine current Yelp data from all the various data sets for Las Vegas to create an interactive map that provides an overview of how a business runs in a locality and how the ratings and reviews tickers a business. We answer the following questions: Where is the most appropriate neighborhood to start a new business (such as cafes, bars, and so on)? Which category of business has the greatest total count of reviews that is the most talked about (trending) business in Las Vegas? How does a business' working hours affect the customer reviews and the corresponding rating of the business? Our findings present research for further understanding of perceptions of various users, while giving reviews and ratings for the growth of a business by encompassing a variety of topics in data mining and data visualization.
Anirban Chakraborty, Oklahoma State University
Sensitive data requires elevated security requirements and the flexibility to apply logic that subsets data based on user privileges. Following the instructions in SAS® Visual Analytics: Administration Guide gives you the ability to apply row-level permission conditions. After you have set the permissions, you have to prove through audits who has access and row-level security. This paper provides you with the ability to easily apply, validate, report, and audit all tables that have row-level permissions, along with the groups, users, and conditions that will be applied. Take the hours of maintenance and lack of visibility out of row-level secure data and build confidence in the data and analytics that are provided to the enterprise.
Brandon Kirk, SAS
For SAS® users, PROC TABULATE and PROC REPORT (and its compute blocks) are probably among the most common procedures for calculating and displaying data. It is, however, pretty difficult to calculate and display changes from one column to another using data from other rows with just these two procedures. Compute blocks in PROC REPORT can calculate additional columns, but it would be challenging to pick up values from other rows as inputs. This presentation shows how PROC TABULATE can work with the lag(n) function to calculate rates of change from one period of time to another. This offers the flexibility of feeding into calculations the data retrieved from other rows of the report. PROC REPORT is then used to produce the desired output. The same approach can also be used in a variety of scenarios to produce customized reports.
Khoi To, Office of Planning and Decision Support, Virginia Commonwealth University
The latest releases of SAS® Data Integration Studio, SAS® Data Management Studio and SAS® Data Integration Server, SAS® Data Governance, and SAS/ACCESS® software provide a comprehensive and integrated set of capabilities for collecting, transforming, and managing your data. The latest features in the product suite include capabilities for working with data from a wide variety of environments and types including Hadoop, cloud, RDBMS, files, unstructured data, streaming, and others, and the ability to perform ETL and ELT transformations in diverse run-time environments including SAS®, database systems, Hadoop, Spark, SAS® Analytics, cloud, and data virtualization environments. There are also new capabilities for lineage, impact analysis, clustering, and other data governance features for enhancements to master data and support metadata management. This paper provides an overview of the latest features of the SAS® Data Management product suite and includes use cases and examples for leveraging product capabilities.
Nancy Rausch, SAS
Each night on the news we hear the level of the Dow Jones Industrial Average along with the 'first difference,' which is today's price-weighted average minus yesterday's. It is that series of first differences that excites or depresses us each night as it reflects whether stocks made or lost money that day. Furthermore, the differences form the data series that has the most addressable statistical features. In particular, the differences have the stationarity requirement, which justifies standard distributional results such as asymptotically normal distributions of parameter estimates. Differencing arises in many practical time series because they seem to have what are called 'unit roots,' which mathematically indicate the need to take differences. In 1976, Dickey and Fuller developed the first well-known tests to decide whether differencing is needed. These tests are part of the ARIMA procedure in SAS/ETS® in addition to many other time series analysis products. I'll review a little of what is was like to do the development and the required computing back then, say a little about why this is an important issue, and focus on examples.
David Dickey, NC State University
For many organizations, the answer to whether to manage their data and analytics in a public or private cloud is going to be both. Both can be the answer for many different reasons: common sense logic not to replace a system that already works just to incorporate something new; legal or corporate regulations that require some data, but not all data, to remain in place; and even a desire to provide local employees with a traditional data center experience while providing remote or international employees with cloud-based analytics easily managed through software deployed via Amazon Web Services (AWS). In this paper, we discuss some of the unique technical challenges of managing a hybrid environment, including how to monitor system performance simultaneously for two different systems that might not share the same infrastructure or even provide comparable system monitoring tools; how to manage authorization when access and permissions might be driven by two different security technologies that make implementation of a singular protocol problematic; and how to ensure overall automation of two platforms that might be independently automated, but not originally designed to work together. In this paper, we share lessons learned from a decade of experience implementing hybrid cloud environments.
Ethan Merrill, SAS
Bryan Harkola, SAS
Even if you're not a GIS mapping pro, it pays to have some geographic problem-solving techniques in your back pocket. In this paper we illustrate a general approach to finding the closest location to any given US zip code, with a specific, user-accessible example of how to do it, using only Base SAS®. We also suggest a method for implementing the solution in a production environment, as well as demonstrate how parallel processing can be used to cut down on computing time if there are hardware constraints.
Andrew Clapson, MD Financial Management
Annmarie Smith, HomeServe USA
Do you write reports that sometimes have missing categories across all class variables? Some programmers write all sorts of additional DATA step code in order to show the zeros for the missing rows or columns. Did you ever wonder whether there is an easier way to accomplish this? PROC MEANS and PROC TABULATE, in conjunction with PROC FORMAT, can handle this situation with a couple of powerful options. With PROC TABULATE, we can use the PRELOADFMT and PRINTMISS options in conjunction with a user-defined format in PROC FORMAT to accomplish this task. With PROC SUMMARY, we can use the COMPLETETYPES option to get all the rows with zeros. This paper uses examples from Census Bureau tabulations to illustrate the use of these procedures and options to preserve missing rows or columns.
Chris Boniface, Census Bureau
Janet Wysocki, U.S. Census Bureau