Resources

Documentation Example 2 for PROC HPFMM

/****************************************************************/
/*          S A S   S A M P L E   L I B R A R Y                 */
/*                                                              */
/*    NAME: hpfmmex2                                            */
/*   TITLE: Documentation Example 2 for PROC HPFMM              */
/*          Three-component mixture, normal-normal-Weibull      */
/* PRODUCT: STAT                                                */
/*  SYSTEM: ALL                                                 */
/*    KEYS: Three-component mixture                             */
/*          Weibull distribution                                */
/*          Starting values                                     */
/*   PROCS: HPFMM, KDE                                          */
/*    DATA: Cattle feeding interval data                        */
/*                                                              */
/* SUPPORT: Dave Kessler                                        */
/*    MISC:                                                     */
/****************************************************************/

data cattle;
   input LogInt Count @@;
   datalines;
 0.70   195  1.10   233  1.40   355  1.60   563
 1.80   822  1.95   926  2.10  1018  2.20  1712
 2.30  3190  2.40  2212  2.50  1692  2.55  1558
 2.65  1622  2.70  1637  2.75  1568  2.85  1599
 2.90  1575  2.95  1526  3.00  1537  3.05  1561
 3.10  1555  3.15  1427  3.20  2852  3.25  1396
 3.30  1343  3.35  2473  3.40  1310  3.45  2453
 3.50  1168  3.55  2300  3.60  2174  3.65  2050
 3.70  1926  3.75  1849  3.80  1687  3.85  2416
 3.90  1449  3.95  2095  4.00  1278  4.05  1864
 4.10  1672  4.15  2104  4.20  1443  4.25  1341
 4.30  1685  4.35  1445  4.40  1369  4.45  1284
 4.50  1523  4.55  1367  4.60  1027  4.65  1491
 4.70  1057  4.75  1155  4.80  1095  4.85  1019
 4.90  1158  4.95  1088  5.00  1075  5.05   912
 5.10  1073  5.15   803  5.20   924  5.25   916
 5.30   784  5.35   751  5.40   766  5.45   833
 5.50   748  5.55   725  5.60   674  5.65   690
 5.70   659  5.75   695  5.80   529  5.85   639
 5.90   580  5.95   557  6.00   524  6.05   473
 6.10   538  6.15   444  6.20   456  6.25   453
 6.30   374  6.35   406  6.40   409  6.45   371
 6.50   320  6.55   334  6.60   353  6.65   305
 6.70   302  6.75   301  6.80   263  6.85   218
 6.90   255  6.95   240  7.00   219  7.05   202
 7.10   192  7.15   180  7.20   162  7.25   126
 7.30   148  7.35   173  7.40   142  7.45   163
 7.50   152  7.55   149  7.60   139  7.65   161
 7.70   174  7.75   179  7.80   188  7.85   239
 7.90   225  7.95   213  8.00   235  8.05   256
 8.10   272  8.15   290  8.20   320  8.25   355
 8.30   307  8.35   311  8.40   317  8.45   335
 8.50   369  8.55   365  8.60   365  8.65   396
 8.70   419  8.75   467  8.80   468  8.85   515
 8.90   558  8.95   623  9.00   712  9.05   716
 9.10   829  9.15   803  9.20   834  9.25   856
 9.30   838  9.35   842  9.40   826  9.45   834
 9.50   798  9.55   801  9.60   780  9.65   849
 9.70   779  9.75   737  9.80   683  9.85   686
 9.90   626  9.95   582 10.00   522 10.05   450
10.10   443 10.15   375 10.20   342 10.25   285
10.30   254 10.35   231 10.40   195 10.45   186
10.50   143 10.55   100 10.60    73 10.65    49
10.70    28 10.75    36 10.80    16 10.85     9
10.90     5 10.95     6 11.00     4 11.05     1
11.15     1 11.25     4 11.30     2 11.35     5
11.40     4 11.45     3 11.50     1
;

ods graphics on;
proc kde data=cattle;
   univar LogInt / bwm=4;
   freq count;
run;

proc hpfmm data=cattle gconv=0;
   model LogInt = / dist=normal k=2 parms(3 1, 5 1);
   model        + / dist=weibull;
   freq count;
run;

ods select DensityPlot;
proc hpfmm data=cattle gconv=0;
   model LogInt = / dist=normal k=2 parms(3 1, 5 1);
   model        + / dist=weibull;
   freq count;
run;

ods select DensityPlot;
proc hpfmm data=cattle plot=density(cumulative) gconv=0;
   model LogInt = / dist=normal k=2 parms(3 1, 5 1);
   model        + / dist=weibull;
   freq count;
run;

proc hpfmm data=cattle gconv=0;
   model LogInt = / dist=normal k=2;
   model        + / dist=weibull;
   freq count;
run;
ods graphics off;