Resources

Getting Started Example for PROC HPNLMOD

/****************************************************************/
/*          S A S   S A M P L E   L I B R A R Y                 */
/*                                                              */
/*    NAME: HPNLNGS                                             */
/*   TITLE: Getting Started Example for PROC HPNLMOD            */
/* PRODUCT: HPSTAT                                              */
/*    KEYS: Nonlinear regression, Enzyme reaction model         */
/*   PROCS: HPNLMOD                                             */
/*    MISC: Estimating the Parameters in the Nonlinear Model    */
/*                                                              */
/****************************************************************/

data enzyme;
   input conc rate @@;
   datalines;
0.26 124.7   0.30 126.9
0.48 135.9   0.50 137.6
0.54 139.6   0.68 141.1
0.82 142.8   1.14 147.6
1.28 149.8   1.38 149.4
1.80 153.9   2.30 152.5
2.44 154.5   2.48 154.7
;

proc hpnlmod data=enzyme;
   parms theta1=0 theta2=0;
   model rate ~ residual(theta1*conc / (theta2 + conc));
run;

data remiss;
   input remiss cell smear infil li blast temp;
   label remiss = 'complete remission';
   like = 0;
   label like = 'dummy variable for nlin';
   datalines;
 1 0.8  .83 .66 1.9 1.10   .996
 1 0.9  .36 .32 1.4 0.74   .992
 0 0.8  .88 .70 0.8 0.176  .982
 0 1    .87 .87 0.7 1.053  .986
 1 0.9  .75 .68 1.3 0.519  .980
 0 1    .65 .65 0.6 0.519  .982
 1 0.95 .97 .92 1   1.23   .992
 0 0.95 .87 .83 1.9 1.354 1.020
 0 1    .45 .45 0.8 0.322  .999
 0 0.95 .36 .34 0.5 0     1.038
 0 0.85 .39 .33 0.7 0.279  .988
 0 0.7  .76 .53 1.2 0.146  .982
 0 0.8  .46 .37 0.4 0.38  1.006
 0 0.2  .39 .08 0.8 0.114  .990
 0 1    .90 .90 1.1 1.037  .990
 1 1    .84 .84 1.9 2.064 1.020
 0 0.65 .42 .27 0.5 0.114 1.014
 0 1    .75 .75 1   1.322 1.004
 0 0.5  .44 .22 0.6 0.114  .990
 1 1    .63 .63 1.1 1.072  .986
 0 1    .33 .33 0.4 0.176 1.010
 0 0.9  .93 .84 0.6 1.591 1.020
 1 1    .58 .58 1   0.531 1.002
 0 0.95 .32 .30 1.6 0.886  .988
 1 1    .60 .60 1.7 0.964  .990
 1 1    .69 .69 0.9 0.398  .986
 0 1    .73 .73 0.7 0.398  .986
 ;

proc hpnlmod data=remiss corr;
   parms int=-10 a=-2 b=-1 c=6;
   linp = int + a*cell + b*li + c*temp;
   p = probnorm(linp);
   model remiss ~ binary(1-p);
run;