Documentation Example 5 for PROC MCMC
/****************************************************************/
/* S A S S A M P L E L I B R A R Y */
/* */
/* NAME: MCMCEX5 */
/* TITLE: Documentation Example 5 for PROC MCMC */
/* Poisson Regression */
/* PRODUCT: STAT */
/* SYSTEM: ALL */
/* KEYS: */
/* PROCS: MCMC */
/* DATA: */
/* */
/* SUPPORT: Fang Chen */
/* REF: PROC MCMC, EXAMPLE 5 */
/* MISC: */
/****************************************************************/
title 'Poisson Regression';
data insure;
input n c car $ age;
ln = log(n);
datalines;
500 42 small 0
1200 37 medium 0
100 1 large 0
400 101 small 1
500 73 medium 1
300 14 large 1
;
proc transreg data=insure design;
model class(car / zero=last);
id n c age ln;
output out=input_insure(drop=_: Int:);
run;
proc mcmc data=input_insure outpost=insureout nmc=5000 propcov=quanew
maxtune=0 seed=7;
ods select PostSumInt;
array data[4] 1 &_trgind age;
array beta[4] alpha beta_car1 beta_car2 beta_age;
parms alpha beta:;
prior alpha beta: ~ normal(0, prec = 1e-6);
call mult(data, beta, mu);
model c ~ poisson(exp(mu+ln));
run;
proc genmod data=insure;
ods select PostSummaries PostIntervals;
class car age(descending);
model c = car age / dist=poisson link=log offset=ln;
bayes seed=17 nmc=5000 coeffprior=normal;
run;