Example 16 for PROC LOGISTIC
/****************************************************************/
/* S A S S A M P L E L I B R A R Y */
/* */
/* NAME: LOGIEX16 */
/* TITLE: Example 16 for PROC LOGISTIC */
/* PRODUCT: STAT */
/* SYSTEM: ALL */
/* KEYS: logistic regression analysis, */
/* binomial response data, */
/* PROCS: LOGISTIC */
/* DATA: */
/* */
/* SUPPORT: Bob Derr */
/* REF: SAS/STAT User's Guide, PROC LOGISTIC chapter */
/* MISC: */
/* */
/****************************************************************/
/*****************************************************************
Example 16. Using the LSMEANS Statement
*****************************************************************/
/*
The NEURALGIA data set is used to demonstrate the LSMEANS statement.
A model including an interaction between TREATMENT and SEX is fit.
The ODDSRATIO statement produces odds ratios contrasting pairs of
levels of TREATMENT at each level of SEX, and a brief discussion of
the odds ratio computation is provided.
The LSMEANS statement first displays the LS-means. The DIFF option
takes differences of the TREATMENT LS-means, the ODDSRATIO option
computes odds ratios of these differences, and the CL option produces
confidence limits for the LS-means and the odds ratios. In contrast
to the results from the ODDSRATIO statement, there is only one LS-means
odds ratio computed for comparing each pair of TREATMENT levels.
The ADJUST=BON option is specified to adjust the p-values and
confidence intervals for multiplicity.
*/
title 'Example 16. Using the LSMEANS Statement';
Data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @@;
datalines;
P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 76 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
B F 66 12 No A M 62 42 No P F 64 1 Yes
A F 64 17 No P M 74 4 No A F 72 25 No
P M 70 1 Yes B M 66 19 No B M 59 29 No
A F 64 30 No A M 70 28 No A M 69 1 No
B F 78 1 No P M 83 1 Yes B F 69 42 No
B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
A M 70 12 No A F 69 12 No B F 65 14 No
B M 70 1 No B M 67 23 No A M 76 25 Yes
P M 78 12 Yes B M 77 1 Yes B F 69 24 No
P M 66 4 Yes P F 65 29 No P M 60 26 Yes
A M 78 15 Yes B M 75 21 Yes A F 67 11 No
P F 72 27 No P F 70 13 Yes A M 75 6 Yes
B F 65 7 No P F 68 27 Yes P M 68 11 Yes
P M 67 17 Yes B M 70 22 No A M 65 15 No
P F 67 1 Yes A M 67 10 No P F 72 11 Yes
A F 74 1 No B M 80 21 Yes A F 69 3 No
;
proc logistic data=Neuralgia;
class Treatment Sex / param=glm;
model Pain= Treatment|Sex Age;
oddsratio Treatment;
lsmeans Treatment / e diff oddsratio cl adjust=bon;
run;
proc logistic data=Neuralgia;
class Treatment Sex / param=glm;
model Pain= Treatment|Sex Age;
lsmestimate treatment 1 0 -1, 0 1 -1 / joint;
run;
proc logistic data=Neuralgia;
class Treatment Sex / param=glm;
model Pain= Treatment|Sex Age;
slice Treatment*Sex / sliceby=Sex diff oddsratio cl adjust=bon;
run;