Balanced Incomplete Block Design (oclpe08)
/***************************************************************/
/* */
/* S A S S A M P L E L I B R A R Y */
/* */
/* NAME: oclpe08 */
/* TITLE: Balanced Incomplete Block Design (oclpe08) */
/* PRODUCT: OR */
/* SYSTEM: ALL */
/* KEYS: OR */
/* PROCS: OPTMODEL */
/* DATA: */
/* */
/* SUPPORT: UPDATE: */
/* REF: */
/* MISC: Example 8 from the CLP Procedure chapter of the */
/* Constraint Programming book. */
/* */
/***************************************************************/
%macro bibd(v, b, r, k, lambda, out=bibdout);
/* Arrange v objects into b blocks such that:
(i) each object occurs in exactly r blocks,
(ii) each block contains exactly k objects,
(iii) every pair of objects occur together in exactly lambda blocks.
Equivalently, create a binary matrix with v rows and b columns,
with r 1s per row, k 1s per column,
and scalar product lambda between any pair of distinct rows.
*/
/* Check necessary conditions */
%if (%eval(&r * &v) ne %eval(&b * &k)) or
(%eval(&lambda * (&v - 1)) ne %eval(&r * (&k - 1))) or
(&v > &b) %then %do;
%put BIBD necessary conditions are not met.;
%goto EXIT;
%end;
proc optmodel;
num v = &v;
num b = &b;
num r = &r;
num k = &k;
num lambda = λ
set OBJECTS = 1..v;
set BLOCKS = 1..b;
/* Decision variable X[i,c] = 1 iff object i occurs in block c. */
var X {OBJECTS, BLOCKS} binary;
/* Mandatory constraints: */
/* (i) Each object occurs in exactly r blocks. */
con Exactly_r_blocks {i in OBJECTS}:
gcc({c in BLOCKS} X[i,c], {<0,0,b-r>,<1,0,r>});
/* (ii) Each block contains exactly k objects. */
con Exactly_k_objects {c in BLOCKS}:
gcc({i in OBJECTS} X[i,c], {<0,0,v-k>,<1,0,k>});
/* (iii) Every pair of objects occurs in exactly lambda blocks. */
set PAIRS = {i in OBJECTS, j in OBJECTS: i < j};
/* auxiliary variable P[i,j,c] = 1 iff both i and j occur in c */
var P {PAIRS, BLOCKS} binary;
con Pairs_reify {<i,j> in PAIRS, c in BLOCKS}:
reify(P[i,j,c], X[i,c] + X[j,c] = 2);
con Pairs_gcc {<i,j> in PAIRS}:
gcc({c in BLOCKS} P[i,j,c], {<0,0,b-lambda>,<1,0,lambda>});
/* symmetry-breaking constraints: */
/* Break row symmetry via lexicographic ordering constraints. */
con Symmetry_i {i in OBJECTS diff {1}}:
lexico({c in BLOCKS} X[i,c] < {c in BLOCKS} X[i-1,c]);
/* Break column symmetry via lexicographic ordering constraints. */
con Symmetry_c {c in BLOCKS diff {1}}:
lexico({i in OBJECTS} X[i,c] <= {i in OBJECTS} X[i,c-1]);
solve with CLP / varselect=FIFO;
create data &out from
{i in OBJECTS, c in BLOCKS} <col('X'||i||'_'||c)=X[i,c]>;
quit;
%put &_oroptmodel_;
%EXIT:
%mend bibd;
%bibd(15,15,7,7,3);
%macro bibd_out(v, b, r, k, lambda, out=bibdout, transpose=0);
/* Create a binary matrix with v rows and b columns from the solution
of the bibd macro. If transpose = 1 then the matrix will be transposed
for convenience of display.
*/
data bibdmat;
set &out;
array Block{&b.};
%do i = 1 %to &v.;
%do j = 1 %to &b.;
Block[&j.] = x&i._&j.;
%end;
output;
%end;
drop x:;
run;
%if &transpose %then %do;
/* Transposes the rows and columns of the binary matrix for
convenience of display. */
proc transpose data=bibdmat
out=bibdmat2(rename=(_NAME_=Block))
prefix=Object;
run;
/* Print the solution */
proc print data=bibdmat2;
title "Balanced Incomplete Block Design Problem";
title2 "(&v, &b, &r, &k, &lambda)";
run;
%end;
%else %do;
/* Print the solution */
proc print data=bibdmat;
title "Balanced Incomplete Block Design Problem";
title2 "(&v, &b, &r, &k, &lambda)";
run;
%end;
%mend bibd_out;
%bibd_out(15,15,7,7,3);