Resources

Cycle Detection for Kidney Donor Exchange


/***************************************************************/
/*                                                             */
/*          S A S   S A M P L E   L I B R A R Y                */
/*                                                             */
/*    NAME: onete02                                            */
/*   TITLE: Cycle Detection for Kidney Donor Exchange          */
/* PRODUCT: OR                                                 */
/*  SYSTEM: ALL                                                */
/*    KEYS: OR                                                 */
/*   PROCS: OPTNET, OPTMODEL, PRINT                            */
/*    DATA:                                                    */
/*                                                             */
/* SUPPORT:                             UPDATE:                */
/*     REF:                                                    */
/*    MISC: Example 2 from the OPTNET documentation.           */
/*                                                             */
/***************************************************************/

/* create random graph on n nodes with arc probability p
   and uniform(0,1) weight */
%let n = 100;
%let p = 0.02;
data LinkSetIn;
   do from = 0 to &n - 1;
      do to = 0 to &n - 1;
         if from eq to then continue;
         else if ranuni(1) < &p then do;
            weight = ranuni(2);
            output;
         end;
      end;
   end;
run;

/* generate all cycles with 2 <= length <= max_length */
%let max_length = 10;
proc optnet
   loglevel        = moderate
   graph_direction = directed
   data_links      = LinkSetIn;
   cycle
      minLength    = 2
      maxLength    = &max_length
      out          = Cycles
      mode         = all_cycles;
run;
%put &_OROPTNET_;
%put &_OROPTNET_CYCLE_;

/* convert Cycles into one observation per arc */
data Cycles0(keep=c i j);
   set Cycles;
   retain last;
   c    = cycle;
   i    = last;
   j    = node;
   last = j;
   if order ne 1 then output;
run;

/* solve set packing problem to find maximum weight node-disjoint union
   of short directed cycles */
proc optmodel;
   /* declare index sets and parameters, and read data */
   set <num,num> ARCS;
   num weight {ARCS};
   read data LinkSetIn into ARCS=[from to] weight;
   set <num,num,num> TRIPLES;
   read data Cycles0 into TRIPLES=[c i j];
   set CYCLES = setof {<c,i,j> in TRIPLES} c;
   set ARCS_c {c in CYCLES} = setof {<(c),i,j> in TRIPLES} <i,j>;
   set NODES_c {c in CYCLES} = union {<i,j> in ARCS_c[c]} {i,j};
   set NODES = union {c in CYCLES} NODES_c[c];
   num cycle_weight {c in CYCLES} = sum {<i,j> in ARCS_c[c]} weight[i,j];

   /* UseCycle[c] = 1 if cycle c is used, 0 otherwise */
   var UseCycle {CYCLES} binary;

   /* declare objective */
   max TotalWeight
      = sum {c in CYCLES} cycle_weight[c] * UseCycle[c];

   /* each node appears in at most one cycle */
   con node_packing {i in NODES}:
      sum {c in CYCLES: i in NODES_c[c]} UseCycle[c] <= 1;

   /* call solver */
   solve with milp;

   /* output optimal solution */
   create data Solution from
      [c]={c in CYCLES: UseCycle[c].sol > 0.5} cycle_weight;
quit;
%put &_OROPTMODEL_;

proc print data=Solution noobs label;
run;