Resources

Defining the Normal Distribution with a Scale Parameter

/*--------------------------------------------------------------

                    SAS Sample Library

        Name: hsevex02.sas
 Description: Example program from SAS/ETS High Performance
              Procedures User's Guide, The HPSEVERITY Procedure
       Title: Defining the Normal Distribution with a Scale Parameter
     Product: SAS High Performance Econometrics Software
        Keys: Severity Distribution Modeling
        PROC: HPSEVERITY
       Notes:

--------------------------------------------------------------*/

/*-------- Define Normal Distribution With Scale Parameter  ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;
   function normal_s_pdf(x, Sigma, Alpha);
      /* Sigma : Scale & Standard Deviation */
      /* Alpha : Scaled mean */
      return ( exp(-(x/Sigma - Alpha)**2/2) /
             (Sigma * sqrt(2*constant('PI'))) );
   endsub;

   function normal_s_cdf(x, Sigma, Alpha);
      /* Sigma : Scale & Standard Deviation */
      /* Alpha : Scaled mean */
      z = x/Sigma - Alpha;
      return (0.5 + 0.5*erf(z/sqrt(2)));
   endsub;

   subroutine normal_s_parminit(dim, x[*], nx[*], F[*], Ftype, Sigma, Alpha);
      outargs Sigma, Alpha;
      array m[2] / nosymbols;
      /* Compute estimates by using method of moments */
      call svrtutil_rawmoments(dim, x, nx, 2, m);
      Sigma = sqrt(m[2] - m[1]**2);
      Alpha = m[1]/Sigma;
   endsub;

   subroutine normal_s_lowerbounds(Sigma, Alpha);
      outargs Sigma, Alpha;
      Alpha = .; /* Alpha has no lower bound */
      Sigma = 0; /* Sigma > 0 */
   endsub;
quit;

/*--- Simulate a Normal sample affected by Regressors ---*/
data testnorm_reg(keep=y x1-x5 Sigma);
   array x{*} x1-x5;
   array b{6} _TEMPORARY_ (1 0.5 . 0.75 -2 1);
   call streaminit(34567);
   label y='Normal Response Influenced by Regressors';

   do n = 1 to 100;
      /* simulate regressors */
      do i = 1 to dim(x);
         x(i) = rand('UNIFORM');
      end;
      /* make x2 linearly dependent on x1 */
      x(2) = 5 * x(1);

      /* compute log of the scale parameter */
      logSigma = b(1);
      do i = 1 to dim(x);
         if (i ne 2) then
            logSigma = logSigma + b(i+1) * x(i);
      end;

      Sigma = exp(logSigma);
      y = rand('NORMAL', 25, Sigma);
      output;
   end;
run;

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit models with PROC HPSEVERITY --------*/
proc hpseverity data=testnorm_reg print=all;
   loss y;
   scalemodel x1-x5;
   dist Normal_s burr logn pareto weibull;
run;

/*--- Refit and compare models with higher limit on iterations ---*/
proc hpseverity data=testnorm_reg print=all;
   loss y;
   scalemodel x1 x3-x5;
   dist Normal_s burr weibull;
   nloptions absfconv=2.0e-5 maxiter=100 maxfunc=500;
run;