The PLS Procedure

References

  • De Jong, S. (1993). “SIMPLS: An Alternative Approach to Partial Least Squares Regression.” Chemometrics and Intelligent Laboratory Systems 18:251–263.

  • De Jong, S., and Kiers, H. (1992). “Principal Covariates Regression.” Chemometrics and Intelligent Laboratory Systems 14:155–164.

  • Dijkstra, T. K. (1983). “Some Comments on Maximum Likelihood and Partial Least Squares Methods.” Journal of Econometrics 22:67–90.

  • Dijkstra, T. K. (1985). Latent Variables in Linear Stochastic Models: Reflections on Maximum Likelihood and Partial Least Squares Methods. 2nd ed. Amsterdam: Sociometric Research Foundation.

  • Frank, I., and Friedman, J. (1993). “A Statistical View of Some Chemometrics Regression Tools.” Technometrics 35:109–135.

  • Geladi, P., and Kowalski, B. (1986). “Partial Least-Squares Regression: A Tutorial.” Analytica Chimica Acta 185:1–17.

  • Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Macmillan.

  • Helland, I. S. (1988). “On the Structure of Partial Least Squares Regression.” Communications in Statistics—Simulation and Computation 17:581–607.

  • Hoerl, A., and Kennard, R. (1970). “Ridge Regression: Biased Estimation for Non-orthogonal Problems.” Technometrics 12:55–67.

  • Lindberg, W., Persson, J.-A., and Wold, S. (1983). “Partial Least-Squares Method for Spectrofluorimetric Analysis of Mixtures of Humic Acid and Ligninsulfonate.” Analytical Chemistry 55:643–648.

  • McAvoy, T. J., Wang, N. S., Naidu, S., Bhat, N., Gunter, J., and Simmons, M. (1989). “Interpreting Biosensor Data via Backpropagation.” International Joint Conference on Neural Networks 1:227–233.

  • Naes, T., and Martens, H. (1985). “Comparison of Prediction Methods for Multicollinear Data.” Communications in Statistics—Simulation and Computation 14:545–576.

  • Ränner, S., Lindgren, F., Geladi, P., and Wold, S. (1994). “A PLS Kernel Algorithm for Data Sets with Many Variables and Fewer Objects.” Journal of Chemometrics 8:111–125.

  • Sarle, W. S. (1994). “Neural Networks and Statistical Models.” In Proceedings of the Nineteenth Annual SAS Users Group International Conference, 1538–1550. Cary, NC: SAS Institute Inc. http://www.sascommunity.org/sugi/SUGI94/Sugi-94-255%20Sarle.pdf.

  • Shao, J. (1993). “Linear Model Selection by Cross-validation.” Journal of the American Statistical Association 88:486–494.

  • Tobias, R. D. (1995). “An Introduction to Partial Least Squares Regression.” In Proceedings of the Twentieth Annual SAS Users Group International Conference, 1250–1257. Cary, NC: SAS Institute Inc. http://www.sascommunity.org/sugi/SUGI95/Sugi-95-210%20Tobias.pdf.

  • Ufkes, J. G. R., Visser, B. J., Heuver, G., and van der Meer, C. (1978). “Structure-Activity Relationships of Bradykinin-Potentiating Peptides.” European Journal of Pharmacology 50:119.

  • Ufkes, J. G. R., Visser, B. J., Heuver, G., Wynne, H. J., and van der Meer, C. (1982). “Further Studies on the Structure-Activity Relationships of Bradykinin-Potentiating Peptides.” European Journal of Pharmacology 79:155.

  • Umetrics (1995). Multivariate Analysis. Three-day course. Winchester, MA: Umetrics.

  • Van den Wollenberg, A. L. (1977). “Redundancy Analysis: An Alternative to Canonical Correlation Analysis.” Psychometrika 42:207–219.

  • Van der Voet, H. (1994). “Comparing the Predictive Accuracy of Models Using a Simple Randomization Test.” Chemometrics and Intelligent Laboratory Systems 25:313–323.

  • Weibe, G. A. (1935). “Variation and Correlation in Grain Yield among 1,500 Wheat Nursery Plots.” Journal of Agricultural Research 50:331–354.

  • Wold, H. (1966). “Estimation of Principal Components and Related Models by Iterative Least Squares.” In Multivariate Analysis, edited by P. R. Krishnaiah, 391–420. New York: Academic Press.

  • Wold, S. (1994). “PLS for Multivariate Linear Modeling.” In QSAR: Chemometric Methods in Molecular Design; Methods and Principles in Medicinal Chemistry, edited by H. van de Waterbeemd, 195–218. Weinheim, Germany: Verlag-Chemie.