Let 
 be a centered and scaled data matrix that has k numerical variables. The eigenvalue decomposition method bases the component extraction on the eigenvalue decomposition of
               the covariance matrix 
, which extracts all the k principal components simultaneously. Each principal component is a linear combination of the original variables, and each
               component is orthogonal, with coefficients equal to the eigenvectors of the covariance matrix 
. The eigenvectors are usually normalized to have unit length. The principal components are sorted by descending order of
               the eigenvalues, which are equal to the variances of the components.