In this example, four different fertilizer treatments are laid out in vertical strips, which are then split into subplots with different levels of calcium. Soil type is stripped across the split-plot experiment, and the entire experiment is then replicated three times. The dependent variable is the yield of winter barley. The data come from the notes of G. Cox and A. Rotti.
The input data are the 96 values of Y, arranged so that the calcium value (Calcium) changes most rapidly, then the fertilizer value (Fertilizer), then the Soil value, and, finally, the Rep value. Values are shown for Calcium (0 and 1); Fertilizer (0, 1, 2, 3); Soil (1, 2, 3); and Rep (1, 2, 3, 4). The following example produces Output 26.5.1, Output 26.5.2, Output 26.5.3, and Output 26.5.4.
title1 'Strip-split Plot';
data Barley;
do Rep=1 to 4;
do Soil=1 to 3; /* 1=d 2=h 3=p */
do Fertilizer=0 to 3;
do Calcium=0,1;
input Yield @;
output;
end;
end;
end;
end;
datalines;
4.91 4.63 4.76 5.04 5.38 6.21 5.60 5.08
4.94 3.98 4.64 5.26 5.28 5.01 5.45 5.62
5.20 4.45 5.05 5.03 5.01 4.63 5.80 5.90
6.00 5.39 4.95 5.39 6.18 5.94 6.58 6.25
5.86 5.41 5.54 5.41 5.28 6.67 6.65 5.94
5.45 5.12 4.73 4.62 5.06 5.75 6.39 5.62
4.96 5.63 5.47 5.31 6.18 6.31 5.95 6.14
5.71 5.37 6.21 5.83 6.28 6.55 6.39 5.57
4.60 4.90 4.88 4.73 5.89 6.20 5.68 5.72
5.79 5.33 5.13 5.18 5.86 5.98 5.55 4.32
5.61 5.15 4.82 5.06 5.67 5.54 5.19 4.46
5.13 4.90 4.88 5.18 5.45 5.80 5.12 4.42
;
proc anova data=Barley;
class Rep Soil Calcium Fertilizer;
model Yield =
Rep
Fertilizer Fertilizer*Rep
Calcium Calcium*Fertilizer Calcium*Rep(Fertilizer)
Soil Soil*Rep
Soil*Fertilizer Soil*Rep*Fertilizer
Soil*Calcium Soil*Fertilizer*Calcium
Soil*Calcium*Rep(Fertilizer);
test h=Fertilizer e=Fertilizer*Rep;
test h=Calcium calcium*fertilizer e=Calcium*Rep(Fertilizer);
test h=Soil e=Soil*Rep;
test h=Soil*Fertilizer e=Soil*Rep*Fertilizer;
test h=Soil*Calcium
Soil*Fertilizer*Calcium e=Soil*Calcium*Rep(Fertilizer);
means Fertilizer Calcium Soil Calcium*Fertilizer;
run;
Output 26.5.2: ANOVA Table
| Source | DF | Anova SS | Mean Square | F Value | Pr > F |
|---|---|---|---|---|---|
| Rep | 3 | 6.27974583 | 2.09324861 | . | . |
| Fertilizer | 3 | 7.22127083 | 2.40709028 | . | . |
| Rep*Fertilizer | 9 | 6.08211250 | 0.67579028 | . | . |
| Calcium | 1 | 0.27735000 | 0.27735000 | . | . |
| Calcium*Fertilizer | 3 | 1.96395833 | 0.65465278 | . | . |
| Rep*Calcium(Fertili) | 12 | 1.76705833 | 0.14725486 | . | . |
| Soil | 2 | 1.92658958 | 0.96329479 | . | . |
| Rep*Soil | 6 | 1.66761042 | 0.27793507 | . | . |
| Soil*Fertilizer | 6 | 0.68828542 | 0.11471424 | . | . |
| Rep*Soil*Fertilizer | 18 | 1.58698125 | 0.08816563 | . | . |
| Soil*Calcium | 2 | 0.04493125 | 0.02246562 | . | . |
| Soil*Calcium*Fertili | 6 | 0.18936042 | 0.03156007 | . | . |
| Rep*Soil*Calc(Ferti) | 24 | 2.19624167 | 0.09151007 | . | . |
Notice in Output 26.5.2 that the default tests against the residual error rate are all unavailable. This is because the Soil*Calcium*Rep(Fertilizer) term in the model takes up all the degrees of freedom, leaving none for estimating the residual error rate. This is appropriate
in this case since the TEST
statements give the specific error terms appropriate for testing each effect. Output 26.5.3 displays the output produced by the various TEST
statements. The only significant effect is the Calcium*Fertilizer interaction.
Output 26.5.4 shows the results of the MEANS
statement, displaying for various effects and combinations of effects, as requested. You can examine the Calcium*Fertilizer means to understand the interaction better.
In this example, you could reduce memory requirements by omitting the Soil*Calcium*Rep(Fertilizer) effect from the model in the MODEL
statement. This effect then becomes the ERROR effect, and you can omit the last TEST
statement in the statements shown earlier. The test for the Soil*Calcium effect is then given in the Analysis of Variance table in the top portion of output. However, for all other tests, you should
look at the results from the TEST
statement. In large models, this method might lead to significant reductions in memory requirements.