The SURVEYFREQ Procedure

References

  • Agresti, A. (2002), Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

  • Agresti, A. (2007), An Introduction to Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

  • Agresti, A. and Coull, B. A. (1998), “Approximate Is Better Than 'Exact' for Interval Estimation of Binomial Proportions,” American Statistician, 52, 119–126.

  • Bedrick, E. J. (1983), “Adjusted Chi-Squared Tests for Cross-Classified Tables of Survey Data,” Biometrika, 70, 591–596.

  • Brick, J. M. and Kalton, G. (1996), “Handling Missing Data in Survey Research,” Statistical Methods in Medical Research, 5, 215–238.

  • Brown, L. D., Cai, T. T., and DasGupta, A. (2001), “Interval Estimation for a Binomial Proportion,” Statistical Science, 16, 101–133.

  • Clopper, C. J. and Pearson, E. S. (1934), “The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial,” Biometrika, 26, 404–413.

  • Cochran, W. G. (1977), Sampling Techniques, 3rd Edition, New York: John Wiley & Sons.

  • Curtin, L. R., Kruszon-Moran, D., Carroll, M., and Li, X. (2006), “Estimation and Analytic Issues for Rare Events in NHANES,” in Proceedings of the Survey Research Methods Section, 2893–2903, Alexandria, VA: American Statistical Association.

  • Dippo, C. S., Fay, R. E., and Morganstein, D. H. (1984), “Computing Variances from Complex Samples with Replicate Weights,” in Proceedings of the Survey Research Methods Section, 489–494, Alexandria, VA: American Statistical Association.

  • Fay, R. E. (1989), “Theory and Application of Replicate Weighting for Variance Calculations,” in Proceedings of the Survey Research Methods Section, 212–217, Alexandria, VA: American Statistical Association.

  • Felligi, I. P. (1980), “Approximate Tests of Independence and Goodness of Fit Based on Stratified Multistage Samples,” Journal of the American Statistical Association, 75, 261–268.

  • Fienberg, S. E. (1980), The Analysis of Cross-Classified Categorical Data, 2nd Edition, Cambridge, MA: MIT Press.

  • Fleiss, J. L. (1981), Statistical Methods for Rates and Proportions, 2nd Edition, New York: John Wiley & Sons.

  • Friendly, M. (2000), Visualizing Categorical Data, Cary, NC: SAS Institute Inc.

  • Fuller, W. A. (1975), “Regression Analysis for Sample Survey,” Sankhy$\bar{a}$, Series C, 37, 117–132.

  • Fuller, W. A., Kennedy, W. J., Schnell, D., Sullivan, G., and Park, H. J. (1989), PC CARP, Ames: Iowa State University Statistical Laboratory.

  • Hansen, M. H., Hurwitz, W. N., and Madow, W. G. (1953), Sample Survey Methods and Theory, volume 1 and 2, New York: John Wiley & Sons.

  • Hidiroglou, M. A., Fuller, W. A., and Hickman, R. D. (1980), SUPER CARP, Ames: Iowa State University Statistical Laboratory.

  • Judkins, D. R. (1990), “Fay’s Method for Variance Estimation,” Journal of Official Statistics, 6, 223–239.

  • Kalton, G. (1983), Introduction to Survey Sampling, Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-035, Beverly Hills, CA: Sage Publications.

  • Kalton, G. and Kasprzyk, D. (1986), “The Treatment of Missing Survey Data,” Survey Methodology, 12, 1–16.

  • Kish, L. (1965), Survey Sampling, New York: John Wiley & Sons.

  • Koch, G. G., Freeman, D. H., and Freeman, J. L. (1975), “Strategies in the Multivariate Analysis of Data from Complex Surveys,” International Statistical Review, 43, 59–78.

  • Koch, G. G., Landis, J. R., Freeman, J. L., Freeman, D. H., and Lehnen, R. G. (1977), “A General Methodology for the Analysis of Experiments with Repeated Measurement of Categorical Data,” Biometrics, 33, 133–158.

  • Korn, E. L. and Graubard, B. I. (1990), “Simultaneous Testing with Complex Survey Data: Use of Bonferroni t-Statistics,” American Statistician, 44, 270–276.

  • Korn, E. L. and Graubard, B. I. (1998), “Confidence Intervals for Proportions with Small Expected Number of Positive Counts Estimated from Survey Data,” Survey Methodology, 24, 193–201.

  • Korn, E. L. and Graubard, B. I. (1999), Analysis of Health Surveys, New York: John Wiley & Sons.

  • Lee, E. S., Forthofer, R. N., and Lorimor, R. J. (1989), Analyzing Complex Survey Data, Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-071, Beverly Hills, CA: Sage Publications.

  • Leemis, L. M. and Trivedi, K. S. (1996), “A Comparison of Approximate Interval Estimators for the Bernoulli Parameter,” American Statistician, 50, 63–68.

  • Levy, P. S. and Lemeshow, S. (1999), Sampling of Populations: Methods and Applications, 3rd Edition, New York: John Wiley & Sons.

  • Lohr, S. L. (2010), Sampling: Design and Analysis, 2nd Edition, Boston: Brooks/Cole.

  • Nathan, G. (1975), “Tests for Independence in Contingency Tables from Stratified Samples,” Sankhy$\bar{a}$, Series C, 37, 77–87.

  • Newcombe, R. G. (1998), “Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods,” Statistics in Medicine, 17, 857–872.

  • Rao, J. N. K. and Scott, A. J. (1979), “Chi-Squared Tests for Analysis of Categorical Data from Complex Surveys,” in Proceedings of the Survey Research Methods Section, 58–66, Washington, DC: American Statistical Association.

  • Rao, J. N. K. and Scott, A. J. (1981), “The Analysis of Categorical Data from Complex Surveys: Chi-Squared Tests for Goodness of Fit and Independence in Two-Way Tables,” Journal of the American Statistical Association, 76, 221–230.

  • Rao, J. N. K. and Scott, A. J. (1984), “On Chi-Squared Tests for Multiway Contingency Tables with Cell Properties Estimated from Survey Data,” Annals of Statistics, 12, 46–60.

  • Rao, J. N. K. and Scott, A. J. (1987), “On Simple Adjustments to Chi-Square Tests with Survey Data,” Annals of Statistics, 15, 385–397.

  • Rao, J. N. K. and Shao, J. (1996), “On Balanced Half-Sample Variance Estimation in Stratified Random Sampling,” Journal of the American Statistical Association, 91, 343–348.

  • Rao, J. N. K. and Shao, J. (1999), “Modified Balanced Repeated Replication for Complex Survey Data,” Biometrika, 86, 403–415.

  • Rao, J. N. K. and Thomas, D. R. (1989), “Chi-Squared Tests for Contingency Tables,” in C. J. Skinner, D. Holt, and T. M. F. Smith, eds., Analysis of Complex Surveys, 89–114, New York: John Wiley & Sons.

  • Särndal, C. E., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling, New York: Springer-Verlag.

  • Satterthwaite, F. E. (1946), “An Approximate Distribution of Estimates of Variance Components,” Biometrics Bulletin, 2, 110–114.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2000), Categorical Data Analysis Using the SAS System, 2nd Edition, Cary, NC: SAS Institute Inc.

  • Sukasih, A. and Jang, D. (2005), “An Application of Confidence Interval Methods for Small Proportions in the Health Care Survey of DoD Beneficiaries,” in Proceedings of the Survey Research Methods Section, 3608–3612, Alexandria, VA: American Statistical Association.

  • Thomas, D. R. and Rao, J. N. K. (1984), “A Monte Carlo Study of Exact Levels of Goodness-of-Fit Statistics under Cluster Sampling,” in Proceedings of the Survey Research Methods Section, 207–211, Alexandria, VA: American Statistical Association.

  • Thomas, D. R. and Rao, J. N. K. (1985), “On the Power of Some Goodness-of-Fit Tests under Cluster Sampling,” in Proceedings of the Survey Research Methods Section, 291–296, Alexandria, VA: American Statistical Association.

  • Thomas, D. R. and Rao, J. N. K. (1987), “Small-Sample Comparisons of Level and Power for Simple Goodness-of-Fit Statistics under Cluster Sampling,” Journal of the American Statistical Association, 82, 630–636.

  • Thomas, D. R., Singh, A. C., and Roberts, G. R. (1996), “Tests of Independence on Two-Way Tables under Cluster Sampling: An Evaluation,” International Statistical Review, 64, 295–311.

  • Wald, A. (1943), “Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations Is Large,” Transactions of the American Mathematical Society, 54, 426–482.

  • Wilson, E. B. (1927), “Probable Inference, the Law of Succession, and Statistical Inference,” Journal of the American Statistical Association, 22, 209–212.

  • Wolter, K. M. (1985), Introduction to Variance Estimation, New York: Springer-Verlag.

  • Woodruff, R. S. (1971), “A Simple Method for Approximating the Variance of a Complicated Estimate,” Journal of the American Statistical Association, 66, 411–414.