The STDRATE Procedure

Getting Started: STDRATE Procedure

This example illustrates indirect standardization and uses the standardized mortality ratio to compare the death rate from skin cancer between people who live in the state of Florida and people who live in the United States as a whole.

The Florida_C43 data set contains the stratum-specific mortality information for skin cancer in year 2000 for the state of Florida (Florida Department of Health, 2000, 2013). The variable Age is a grouping variable that forms the strata in the standardization, and the variables Event and PYear identify the number of events and total person-years, respectively. The COMMA11. format is specified in the DATA step to input numerical values that contain commas in PYear.

data Florida_C43;
   input Age $1-5 Event PYear comma11.;
   datalines;
00-04    0    953,785
05-14    0  1,997,935
15-24    4  1,885,014
25-34   14  1,957,573
35-44   43  2,356,649
45-54   72  2,088,000
55-64   70  1,548,371
65-74  126  1,447,432
75-84  136  1,087,524
85+     73    335,944
;

The US_C43 data set contains the corresponding stratum-specific mortality information for the United States in year 2000 (Miniño et al., 2002; U.S. Bureau of the Census, 2011). The variable Age is the grouping variable, and the variables Event and PYear identify the number of events and the total person-years, respectively.

data US_C43;
   input Age $1-5 Event comma7. PYear comma12.;
   datalines;
00-04      0  19,175,798
05-14      1  41,077,577
15-24     41  39,183,891
25-34    186  39,892,024
35-44    626  45,148,527
45-54  1,199  37,677,952
55-64  1,303  24,274,684
65-74  1,637  18,390,986
75-84  1,624  12,361,180
85+      803   4,239,587
;

The following statements invoke the STDRATE procedure and request indirect standardization to compare death rates between the state of Florida and the United States:

ods graphics on;
proc stdrate data=Florida_C43 refdata=US_C43
             method=indirect
             stat=rate(mult=100000)
             plots=all
             ;
   population event=Event total=PYear;
   reference  event=Event total=PYear;
   strata Age / stats smr;
run;
ods graphics off;

The DATA= and REFDATA= options name the study data set and reference data set, respectively. The METHOD=INDIRECT option requests indirect standardization. The STAT=RATE option specifies the rate as the frequency measure for standardization, and the MULT=100000 suboption (which is the default) displays the rates per 100,000 person-years in the table output and graphics output. The PLOTS=ALL option requests all appropriate plots with indirect standardization.

The POPULATION statement specifies the options that are related to the study population, and the EVENT= and TOTAL= options specify variables for the number of events and person-years in the study population, respectively.

The REFERENCE statement specifies the options related to the reference population, and the EVENT= and TOTAL= options specify variables for the number of events and person-years in the reference population, respectively.

The STRATA statement lists the variable Age that forms the strata. The STATS option requests a strata information table that contains stratum-specific statistics such as rates, and the SMR option requests a table of stratum-specific SMR estimates.

The Standardization Information table in Figure 88.1 displays the standardization information.

Figure 88.1: Standardization Information

The STDRATE Procedure

Standardization Information
Data Set WORK.FLORIDA_C43
Reference Data Set WORK.US_C43
Method Indirect Standardization
Statistic Rate
Number of Strata 10
Rate Multiplier 100000


The STATS option in the STRATA statement requests that the Indirectly Standardized Strata Statistics table in Figure 88.2 display the strata information and expected number of events at each stratum. The MULT=100000 suboption in the STAT=RATE option requests that crude rates per $100,000$ person-years be displayed. The Expected Events column displays the expected number of events when the stratum-specific rates in the reference data set are applied to the corresponding person-years in the study data set.

Figure 88.2: Strata Information (Indirect Standardization)

The STDRATE Procedure

Indirectly Standardized Strata Statistics
Rate Multiplier = 100000
Stratum
Index
Age Study Population Reference Population Expected
Events
Observed
Events
Population-Time Crude Rate Standard
Error
  Population-Time Crude
Rate
Value Proportion 95% Normal Confidence
Limits
Value Proportion
1 00-04 0 953785 0.0609 0.0000 0.00000 0.0000 0.0000 19175798 0.0681 0.0000 0.000
2 05-14 0 1997935 0.1276 0.0000 0.00000 0.0000 0.0000 41077577 0.1460 0.0024 0.049
3 15-24 4 1885014 0.1204 0.2122 0.10610 0.0042 0.4202 39183891 0.1392 0.1046 1.972
4 25-34 14 1957573 0.1250 0.7152 0.19114 0.3405 1.0898 39892024 0.1418 0.4663 9.127
5 35-44 43 2356649 0.1505 1.8246 0.27825 1.2793 2.3700 45148527 0.1604 1.3865 32.676
6 45-54 72 2088000 0.1333 3.4483 0.40638 2.6518 4.2448 37677952 0.1339 3.1822 66.445
7 55-64 70 1548371 0.0989 4.5209 0.54035 3.4618 5.5799 24274684 0.0863 5.3677 83.112
8 65-74 126 1447432 0.0924 8.7051 0.77551 7.1851 10.2250 18390986 0.0654 8.9011 128.837
9 75-84 136 1087524 0.0695 12.5055 1.07234 10.4037 14.6072 12361180 0.0439 13.1379 142.878
10 85+ 73 335944 0.0215 21.7298 2.54328 16.7451 26.7146 4239587 0.0151 18.9405 63.630


With ODS Graphics enabled, the PLOTS=ALL option displays all appropriate plots. With indirect standardization and a rate statistic, these plots include the strata distribution plot, the strata rate plot, and the strata SMR plot. By default, strata levels are displayed on the vertical axis for these plots.

The strata distribution plot displays proportions for stratum-specific person-years in the study and reference populations, as shown in Figure 88.3.

Figure 88.3: Strata Distribution Plot

Strata Distribution Plot


The strata distribution plot displays the proportions in the Indirectly Standardized Strata Statistics table in Figure 88.2. In the plot, the proportions of the study population are identified by the blue lines, and the proportions of the reference population are identified by the red lines. The plot shows that the study population has higher proportions in older age groups and lower proportions in younger age groups than the reference population.

The strata rate plot displays stratum-specific rate estimates in the study and reference populations, as shown in Figure 88.4. This plot displays the rate estimates in the Indirectly Standardized Strata Statistics table in Figure 88.2. In addition, the plot displays the confidence limits for the rate estimates in the study population and the overall crude rates for the two populations.

Figure 88.4: Strata Rate Plot

Strata Rate Plot


The SMR option in the STRATA statement requests that the Strata SMR Estimates table in Figure 88.5 display the strata SMR at each stratum. The MULT=100000 suboption in the STAT=RATE option requests that the reference rates per $100,000$ person-years be displayed.

Figure 88.5: Strata SMR Information

Strata SMR Estimates
Rate Multiplier = 100000
Stratum
Index
Age Study Population Reference
Crude
Rate
Expected
Events
SMR Standard
Error
 
Observed
Events
Population-
Time
95% Normal Confidence
Limits
1 00-04 0 953785 0.0000 0.000 . . . .
2 05-14 0 1997935 0.0024 0.049 0.0000 . . .
3 15-24 4 1885014 0.1046 1.972 2.0280 1.0140 0.0406 4.0154
4 25-34 14 1957573 0.4663 9.127 1.5339 0.4099 0.7304 2.3373
5 35-44 43 2356649 1.3865 32.676 1.3160 0.2007 0.9226 1.7093
6 45-54 72 2088000 3.1822 66.445 1.0836 0.1277 0.8333 1.3339
7 55-64 70 1548371 5.3677 83.112 0.8422 0.1007 0.6449 1.0395
8 65-74 126 1447432 8.9011 128.837 0.9780 0.0871 0.8072 1.1487
9 75-84 136 1087524 13.1379 142.878 0.9519 0.0816 0.7919 1.1118
10 85+ 73 335944 18.9405 63.630 1.1473 0.1343 0.8841 1.4104


The Strata SMR Estimates table shows that although SMR is less than 1 only at three age strata (55–64, 65–74, and 75–84), these three strata contain about $60\% $ of the total events.

The strata SMR plot displays stratum-specific SMR estimates with confidence limits, as shown in Figure 88.6. The plot displays the SMR estimates in the Strata SMR Estimates table in Figure 88.5.

Figure 88.6: Strata SMR Plot

Strata SMR Plot


The METHOD=INDIRECT option requests that the Standardized Morbidity/Mortality Ratio table in Figure 88.7 be displayed. The table displays the SMR, its confidence limits, and the test for the null hypothesis $H_0: \mbox{SMR}=1$. The default ALPHA=0.05 option requests that $95\% $ confidence limits be constructed.

Figure 88.7: Standardized Morbidity/Mortality Ratio

Standardized Morbidity/Mortality Ratio
Observed
Events
Expected
Events
SMR Standard
Error
95% Normal Confidence
Limits
Z Pr > |Z|
538 528.726 1.0175 0.0439 0.9316 1.1035 0.40 0.6893


The $95\% $ normal confidence limits contain the null hypothesis value $\mbox{SMR}=1$, and the hypothesis of $\mbox{SMR}=1$ is not rejected at the $\alpha =0.05$ level from the normal test.

The Indirectly Standardized Rate Estimates table in Figure 88.8 displays the indirectly standardized rate and related statistics.

Figure 88.8: Standardized Rate Estimates (Indirect Standardization)

Indirectly Standardized Rate Estimates
Rate Multiplier = 100000
Study Population Reference
Crude
Rate
Expected
Events
SMR Standardized Rate
Observed
Events
Population-
Time
Crude
Rate
Estimate Standard
Error
95% Normal Confidence
Limits
538 15658227 3.4359 2.6366 528.726 1.0175 2.6829 0.1157 2.4562 2.9096


The indirectly standardized rate estimate is the product of the SMR and the crude rate estimate for the reference population. The table shows that although the crude rate in the state of Florida (3.4359) is $30\% $ higher than the crude rate in the U.S. (2.6366), the resulting standardized rate (2.6829) is close to the crude rate in the U.S.