|
|
Example 65.3 An Incomplete Block Design
Jarrett and Hall (1978) give an example of a generalized cyclic design with good efficiency characteristics. The design consists of two replicates of 52 treatments in 13 blocks of size 8. The following statements use the PLAN procedure to generate this design in an appropriately randomized form and store it in a SAS data set GCBD. Then the design is sorted and transposed to display in randomized order. The following statements produce Output 65.3.1 and Output 65.3.2:
title 'Generalized Cyclic Block Design';
proc plan seed=33373;
treatments Treatment=8 of 52 cyclic (1 2 3 4 32 43 46 49) 4;
factors Block=13 Plot=8;
output out=GCBD;
quit;
proc sort data=GCBD out=GCBD;
by Block Plot;
proc transpose data= GCBD(rename=(Plot=_NAME_))
out =tGCBD(drop=_NAME_);
by Block;
var Treatment;
proc print data=tGCBD noobs;
run;
Output 65.3.1
A Generalized Cyclic Block Design
8 |
52 |
Cyclic |
(1 2 3 4 32 43 46 49) / 4 |
10 |
7 |
4 |
8 |
1 |
2 |
3 |
5 |
6 |
1 |
2 |
3 |
4 |
32 |
43 |
46 |
49 |
8 |
1 |
2 |
4 |
3 |
8 |
6 |
5 |
7 |
5 |
6 |
7 |
8 |
36 |
47 |
50 |
1 |
9 |
2 |
5 |
4 |
7 |
3 |
1 |
8 |
6 |
9 |
10 |
11 |
12 |
40 |
51 |
2 |
5 |
6 |
4 |
2 |
6 |
8 |
3 |
7 |
1 |
5 |
13 |
14 |
15 |
16 |
44 |
3 |
6 |
9 |
7 |
4 |
7 |
6 |
3 |
1 |
2 |
8 |
5 |
17 |
18 |
19 |
20 |
48 |
7 |
10 |
13 |
4 |
4 |
8 |
1 |
5 |
3 |
6 |
7 |
2 |
21 |
22 |
23 |
24 |
52 |
11 |
14 |
17 |
2 |
6 |
2 |
3 |
8 |
7 |
5 |
1 |
4 |
25 |
26 |
27 |
28 |
4 |
15 |
18 |
21 |
3 |
6 |
2 |
3 |
1 |
7 |
4 |
5 |
8 |
29 |
30 |
31 |
32 |
8 |
19 |
22 |
25 |
1 |
1 |
2 |
7 |
8 |
5 |
6 |
3 |
4 |
33 |
34 |
35 |
36 |
12 |
23 |
26 |
29 |
5 |
5 |
7 |
6 |
8 |
4 |
3 |
1 |
2 |
37 |
38 |
39 |
40 |
16 |
27 |
30 |
33 |
12 |
5 |
8 |
1 |
4 |
7 |
3 |
6 |
2 |
41 |
42 |
43 |
44 |
20 |
31 |
34 |
37 |
13 |
3 |
5 |
1 |
8 |
4 |
2 |
6 |
7 |
45 |
46 |
47 |
48 |
24 |
35 |
38 |
41 |
11 |
4 |
1 |
5 |
2 |
3 |
8 |
6 |
7 |
49 |
50 |
51 |
52 |
28 |
39 |
42 |
45 |
Output 65.3.2
A Generalized Cyclic Block Design
1 |
33 |
34 |
26 |
29 |
12 |
23 |
35 |
36 |
2 |
18 |
26 |
27 |
21 |
15 |
25 |
4 |
28 |
3 |
32 |
30 |
31 |
19 |
22 |
29 |
8 |
25 |
4 |
23 |
17 |
52 |
21 |
24 |
11 |
14 |
22 |
5 |
30 |
33 |
27 |
16 |
37 |
39 |
38 |
40 |
6 |
6 |
14 |
44 |
13 |
9 |
15 |
3 |
16 |
7 |
48 |
7 |
20 |
17 |
13 |
19 |
18 |
10 |
8 |
5 |
6 |
8 |
7 |
50 |
47 |
1 |
36 |
9 |
51 |
9 |
40 |
11 |
10 |
5 |
12 |
2 |
10 |
4 |
32 |
43 |
2 |
46 |
49 |
1 |
3 |
11 |
50 |
52 |
28 |
49 |
51 |
42 |
45 |
39 |
12 |
43 |
37 |
31 |
44 |
41 |
34 |
20 |
42 |
13 |
47 |
35 |
45 |
24 |
46 |
38 |
41 |
48 |
Copyright
© 2009 by SAS Institute Inc., Cary, NC, USA. All
rights reserved.