Aldrich, J. (1997), “R. A. Fisher and the Making of Maximum Likelihood, 1912–1922,” Statistical Science, 12, 162–176.
Breslow, N. E. (1984), “Extra-Poisson Variation in Log-Linear Models,” Applied Statistics, 33, 38–44.
Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge University Press.
Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006), “Deviance Information Criteria for Missing Data Models,” Bayesian Analysis, 1, 651–674.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 39, 1–38.
Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.
Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values,” Journal of Optimization Theory and Applications, 28, 453–482.
Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified Cholesky Factorization,” ACM Transactions on Mathematical Software, 17, 306–312.
Everitt, B. S. and Hand, D. J. (1981), Finite Mixture Distributions, Chapman & Hall.
Ferrari, S. L. P. and Cribari-Neto, F. (2004), “Beta Regression for Modelling Rates and Proportions,” Journal of Applied Statistics, 31, 799–815.
Fisher, R. A. (1921), “On the 'Probable Error' of a Coefficient of Correlation Deduced from a Small Sample,” Metron, 1, 3–32.
Fletcher, R. (1987), Practical Methods of Optimization, 2nd Edition, Chichester, UK: John Wiley & Sons.
Frühwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, New York: Springer.
Gamerman, D. (1997), “Sampling from the Posterior Distribution in Generalized Linear Models,” Statistics and Computing, 7, 57–68.
Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM Transactions on Mathematical Software, 9, 503–524.
Geweke, J. (1992), “Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Moments,” in J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Bayesian Statistics, volume 4, Oxford: Clarendon Press.
Griffiths, D. A. (1973), “Maximum Likelihood Estimation for the Beta-Binomial Distribution and an Application to the Household Distribution of the Total Number of Cases of a Disease,” Biometrics, 29, 637–648.
Haseman, J. K. and Kupper, L. L. (1979), “Analysis of Dichotomous Response Data from Certain Toxicological Experiments,” Biometrics, 35, 281–293.
Joe, H. and Zhu, R. (2005), “Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial Distribution,” Biometrical Journal, 47, 219–229.
Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998), “Markov Chain Monte Carlo in Practice: A Roundtable Discussion,” American Statistician, 52, 93–100.
Lawless, J. F. (1987), “Negative Binomial and Mixed Poisson Regression,” Canadian Journal of Statistics, 15, 209–225.
Margolin, B. H., Kaplan, N. L., and Zeiger, E. (1981), “Statistical Analysis of the Ames Salmonella Microsome Test,” Proceedings of the National Academy of Sciences, 76, 3779–3783.
McLachlan, G. J. and Peel, D. (2000), Finite Mixture Models, New York: John Wiley & Sons.
Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and Theory,” in G. A. Watson, ed., Lecture Notes in Mathematics, volume 30, 105–116, Berlin: Springer-Verlag.
Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM Journal on Scientific and Statistical Computing, 4, 553–572.
Morel, J. G. and Nagaraj, N. K. (1993), “A Finite Mixture Distribution for Modelling Multinomial Extra Variation,” Biometrika, 80, 363–371.
Morel, J. G. and Neerchal, N. K. (1997), “Clustered Binary Logistic Regression in Teratology Data Using a Finite Mixture Distribution,” Statistics in Medicine, 16, 2843–2853.
Neerchal, N. K. and Morel, J. G. (1998), “Large Cluster Results for Two Parametric Multinomial Extra Variation Models,” Journal of the American Statistical Association, 93, 1078–1087.
Pearson, K. (1915), “On Certain Types of Compound Frequency Distributions in Which the Components Can Be Individually Described by Binomial Series,” Biometrika, 11, 139–144.
Raftery, A. E. (1996), “Hypothesis Testing and Model Selection,” in W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, eds., Markov Chain Monte Carlo in Practice, 163–188, London: Chapman & Hall.
Richardson, S. (2002), “Discussion of Spiegelhalter et al.” Journal of the Royal Statistical Society, Series B, 64, 631.
Roeder, K. (1990), “Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in the Galaxies,” Journal of the American Statistical Association, 85, 617–624.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002), “Bayesian Measures of Model Complexity and Fit,” Journal of the Royal Statistical Society, Series B, 64(4), 583–616, with discussion.
Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985), Statistical Analysis of Finite Mixture Distributions, New York: John Wiley & Sons.
Viallefont, V., Richardson, S., and Greene, P. J. (2002), “Bayesian Analysis of Poisson Mixtures,” Journal of Nonparametric Statistics, 14, 181–202.
Wang, P., Puterman, M. L., Cockburn, I., and Le, N. (1996), “Mixed Poisson Regression Models with Covariate Dependent Rates,” Biometrics, 52, 381–400.
Williams, D. A. (1975), “The Analysis of Binary Responses from Toxicological Experiments Involving Reproduction and Teratogenicity,” Biometrics, 31, 949–952.