The HPLMIXED Procedure

References

  • Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Transaction on Automatic Control, AC–19, 716–723.

  • Burdick, R. K. and Graybill, F. A. (1992), Confidence Intervals on Variance Components, New York: Marcel Dekker.

  • Burnham, K. P. and Anderson, D. R. (1998), Model Selection and Inference: A Practical Information-Theoretic Approach, New York: Springer-Verlag.

  • Brown, H. and Prescott, R. (1999), Applied Mixed Models in Medicine, New York: John Wiley & Sons.

  • Carlin, B. P. and Louis, T. A. (1996), Bayes and Empirical Bayes Methods for Data Analysis, London: Chapman and Hall.

  • Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, Ser. B., 39, 1–38.

  • Fai, A. H. T. and Cornelius, P. L. (1996), Approximate F-tests of Multiple Degree of Freedom Hypotheses in Generalized Least Squares Analyses of Unbalanced Split-Plot Experiments, Journal of Statistical Computation and Simulation, 54, 363–378.

  • Fuller, W. A. (1976), Introduction to Statistical Time Series, New York: John Wiley & Sons.

  • Giesbrecht, F. G. and Burns, J. C. (1985), Two-Stage Analysis Based on a Mixed Model: Large-sample Asymptotic Theory and Small-Sample Simulation Results, Biometrics, 41, 477–486.

  • Hartley, H. O. and Rao, J. N. K. (1967), Maximum-Likelihood Estimation for the Mixed Analysis of Variance Model, Biometrika, 54, 93–108.

  • Hurvich, C. M. and Tsai, C.-L. (1989), Regression and Time Series Model Selection in Small Samples, Biometrika, 76, 297–307.

  • Harville, D. A. (1977), Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems, Journal of the American Statistical Association, 72, 320–338.

  • Harville, D. A. (1988), Mixed-Model Methodology: Theoretical Justifications and Future Directions, Proceedings of the Statistical Computing Section, American Statistical Association, New Orleans, 41–49.

  • Harville, D. A. (1990), BLUP (Best Linear Unbiased Prediction), and Beyond, in Advances in Statistical Methods for Genetic Improvement of Livestock, Springer-Verlag, 239–276.

  • Henderson, C. R. (1984), Applications of Linear Models in Animal Breeding, University of Guelph.

  • Henderson, C. R. (1990), Statistical Method in Animal Improvement: Historical Overview, in Advances in Statistical Methods for Genetic Improvement of Livestock, New York: Springer-Verlag, 1–14.

  • Huynh, H. and Feldt, L. S. (1970), Conditions Under Which Mean Square Ratios in Repeated Measurements Designs Have Exact F-Distributions, Journal of the American Statistical Association, 65, 1582–1589.

  • Jennrich, R. I. and Schluchter, M. D. (1986), Unbalanced Repeated-Measures Models with Structured Covariance Matrices, Biometrics, 42, 805–820.

  • Kenward, M. G. (1987), A Method for Comparing Profiles of Repeated Measurements, Applied Statistics, 36, 296–308.

  • Laird, N. M., Lange, N., and Stram, D. (1987), Maximum Likelihood Computations with Repeated Measures: Application of the EM Algorithm, Journal of the American Statistical Association, 82, 97–105.

  • Laird, N. M. and Ware, J. H. (1982), Random-Effects Models for Longitudinal Data, Biometrics, 38, 963–974.

  • Lindstrom, M. J. and Bates, D. M. (1988), Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data, Journal of the American Statistical Association, 83, 1014–1022.

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. (2006), SAS for Mixed Models, Second Edition, Cary, NC: SAS Institute Inc.

  • Little, R. J. A. (1995), Modeling the Drop-Out Mechanism in Repeated-Measures Studies, Journal of the American Statistical Association, 90, 1112–1121.

  • Macchiavelli, R. E. and Arnold, S. F. (1994), Variable Order Ante-dependence Models, Communications in Statistics–Theory and Methods, 23(9), 2683–2699.

  • McLean, R. A. and Sanders, W. L. (1988), Approximating Degrees of Freedom for Standard Errors in Mixed Linear Models, Proceedings of the Statistical Computing Section, American Statistical Association, New Orleans, 50–59.

  • McLean, R. A., Sanders, W. L., and Stroup, W. W. (1991), A Unified Approach to Mixed Linear Models, The American Statistician, 45, 54–64.

  • Milliken, G. A. and Johnson, D. E. (1992), Analysis of Messy Data, Volume 1: Designed Experiments, New York: Chapman and Hall.

  • Patel, H. I. (1991), Analysis of Incomplete Data from a Clinical Trial with Repeated Measurements, Biometrika, 78, 609–619.

  • Patterson, H. D. and Thompson, R. (1971), Recovery of Inter-block Information When Block Sizes Are Unequal, Biometrika, 58, 545–554.

  • Robinson, G. K. (1991), That BLUP Is a Good Thing: The Estimation of Random Effects, Statistical Science, 6, 15–51.

  • Rubin, D. B. (1976), Inference and Missing Data, Biometrika, 63, 581–592.

  • Schluchter, M. D. and Elashoff, J. D. (1990), Small-Sample Adjustments to Tests with Unbalanced Repeated Measures Assuming Several Covariance Structures, Journal of Statistical Computation and Simulation, 37, 69–87.

  • Schwarz, G. (1978), Estimating the Dimension of a Model, Annals of Statistics, 6, 461–464.

  • Searle, S. R. (1971), Linear Models, New York: John Wiley & Sons.

  • Searle, S. R. (1982), Matrix Algebra Useful for Statisticians, New York: John Wiley & Sons.

  • Searle, S. R., Casella, G., and McCulloch, C. E. (1992), Variance Components, New York: John Wiley & Sons.

  • Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, New York: John Wiley & Sons.

  • Snedecor, G. W. and Cochran, W. G. (1980), Statistical Methods, Ames: Iowa State University Press.

  • Steel, R. G. D., Torrie, J. H., and Dickey D. (1997), Principles and Procedures of Statistics: A Biometrical Approach, Third Edition, New York: McGraw-Hill, Inc.

  • Verbeke, G. and Molenberghs, G., eds. (1997), Linear Mixed Models in Practice: A SAS-Oriented Approach, New York: Springer.

  • Verbeke, G. and Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, New York: Springer.

  • Winer, B. J. (1971), Statistical Principles in Experimental Design, Second Edition, New York: McGraw-Hill, Inc.

  • Wolfinger, R. D. (1996), Heterogeneous Variance-Covariance Structures for Repeated Measures, Journal of Agricultural, Biological, and Environmental Statistics, 1, 205–230.

  • Wolfinger, R. D., Tobias, R. D., and Sall, J. (1994), Computing Gaussian Likelihoods and Their Derivatives for General Linear Mixed Models, SIAM Journal on Scientific Computing, 15(6), 1294–1310.