PROBPLOT Statement: CAPABILITY Procedure

Summary of Theoretical Distributions

You can use the PROBPLOT statement to request probability plots based on the theoretical distributions summarized in Table 5.62.

Table 5.62: Distributions and Parameters

     

Parameters

Distribution

Density Function $p(x)$

Range

Location

Scale

Shape

Beta

$\frac{(x-\theta )^{\alpha -1}(\theta +\sigma -x)^{\beta -1}}{B(\alpha ,\beta )\sigma ^{(\alpha +\beta -1)}}$

$\theta < x <\theta +\sigma $

$\theta $

$\sigma $

$\alpha $, $\beta $

Exponential

$\frac{1}{\sigma }\exp \left(-\frac{x-\theta }{\sigma }\right)$

$x \geq \theta $

$\theta $

$\sigma $

 

Gamma

$\frac{1}{\sigma \Gamma (\alpha )} \left(\frac{x-\theta }{\sigma }\right)^{\alpha -1} \exp \left(-\frac{x-\theta }{\sigma }\right)$

$x>\theta $

$\theta $

$\sigma $

$\alpha $

Gumbel

$\frac{e^{-(x-\mu )/\sigma }}{\sigma } \exp \left( -e^{-(x-\mu )/\sigma }\right)$

all x

$\mu $

$\sigma $

 

Lognormal

$\frac{1}{\sigma \sqrt {2\pi }(x-\theta )} \exp \left(-\frac{(\log (x-\theta )-\zeta )^{2}}{2\sigma ^{2}}\right)$

$x>\theta $

$\theta $

$\zeta $

$\sigma $

(3-parameter)

         

Normal

$\frac{1}{\sigma \sqrt {2\pi }} \exp \left(-\frac{(x-\mu )^2}{2\sigma ^{2}}\right)$

all x

$\mu $

$\sigma $

 

Generalized

$\alpha \neq 0$

$\frac{1}{\sigma }{(1 - \alpha (x-\theta )/\sigma )}^{1/\alpha -1}$

$x > \theta $

$\theta $

$\sigma $

$\alpha $

Pareto

$\alpha = 0$

$\frac{1}{\sigma }\exp (-(x-\theta )/\sigma )$

       

Power Function

$\frac{\alpha }{\sigma }\left(\frac{x-\theta }{\sigma }\right)^{\alpha -1}$

$x > \theta $

$\theta $

$\sigma $

$\alpha $

Rayleigh

$\frac{x-\theta }{\sigma ^2}\exp (-(x-\theta )^2/(2\sigma ^2))$

$x \geq \theta $

$\theta $

$\sigma $

 

Weibull

$\frac{c}{\sigma }\left(\frac{x-\theta }{\sigma }\right)^{c-1} \exp \left(-\left(\frac{x-\theta }{\sigma }\right)^{c}\right)$

$x>\theta $

$\theta $

$\sigma $

c

(3-parameter)

         

Weibull

$\frac{c}{\sigma }\left(\frac{x-\theta _0}{\sigma }\right)^{c-1} \exp \left(-\left(\frac{x-\theta _0}{\sigma }\right)^{c}\right)$

$x>\theta _0$

$\theta _0$

$\sigma $

c

(2-parameter)

   

(known)

   


You can request these distributions with the BETA , EXPONENTIAL , GAMMA , LOGNORMAL , NORMAL , WEIBULL , and WEIBULL2 options, respectively. If you do not specify a distribution option, a normal probability plot is created.

Shape Parameters

Some of the distribution options in the PROBPLOT statement require you to specify one or two shape parameters in parentheses after the distribution keyword. These are summarized in Table 5.63.

Table 5.63: Shape Parameter Options for the PROBPLOT Statement

Distribution Keyword

Mandatory Shape Parameter Option

Range

BETA

ALPHA=$\alpha $, BETA=$\beta $

$\alpha >0$, $\beta >0$

EXPONENTIAL

None

 

GAMMA

ALPHA=$\alpha $

$\alpha >0$

GUMBEL

None

 

LOGNORMAL

SIGMA=$\sigma $

$\sigma >0$

NORMAL

None

 

PARETO

ALPHA=$\alpha $

$\alpha >0$

POWER

ALPHA=$\alpha $

$\alpha >0$

RAYLEIGH

None

 

WEIBULL

C=c

c > 0

WEIBULL2

None

 


You can visually estimate the value of a shape parameter by specifying a list of values for the shape parameter option. The PROBPLOT statement produces a separate plot for each value. You can then use the value of the shape parameter producing the most nearly linear point pattern. Alternatively, you can request that the plot be created using an estimated shape parameter. For an example, see Creating Lognormal Probability Plots.

Location and Scale Parameters

If you specify the location and scale parameters for a distribution (or if you request estimates for these parameters), a diagonal distribution reference line is displayed on the plot. (An exception is the two-parameter Weibull distribution, for which a line is displayed when you specify or estimate the scale and shape parameters.) Agreement between this line and the point pattern indicates that the distribution with these parameters is a good fit. For illustrations, see Example 5.19 and Example 5.20.

The following table shows how the specified parameters determine the intercept[11] and slope of the line:

Table 5.64: Intercept and Slope of Distribution Reference Line

 

Parameters

Linear Pattern

Distribution

Location

Scale

Shape

Intercept

Slope

Beta

$\theta $

$\sigma $

$\alpha $ , $\beta $

$\theta $

$\sigma $

Exponential

$\theta $

$\sigma $

 

$\theta $

$\sigma $

Gamma

$\theta $

$\sigma $

$\alpha $

$\theta $

$\sigma $

Gumbel

$\mu $

$\sigma $

 

$\mu $

$\sigma $

Lognormal

$\theta $

$\zeta $

$\sigma $

$\theta $

$\exp (\zeta )$

Normal

$\mu $

$\sigma $

 

$\mu $

$\sigma $

Generalized Pareto

$\theta $

$\sigma $

$\alpha $

$\theta $

$\sigma $

Power Function

$\theta $

$\sigma $

$\alpha $

$\theta $

$\sigma $

Rayleigh

$\theta $

$\sigma $

 

$\theta $

$\sigma $

Weibull (3-parameter)

$\theta $

$\sigma $

c

$\theta $

$\sigma $

Weibull (2-parameter)

$\theta _0$ (known)

$\sigma $

c

$\log (\sigma )$

$\frac{1}{c}$


For the LOGNORMAL and WEIBULL2 options, you can specify the slope directly with the SLOPE= option. That is, for the LOGNORMAL option, specifying THETA=$\theta _0$ and SLOPE=$\exp (\zeta _0)$ displays the same line as specifying THETA=$\theta _0$ and ZETA=$\zeta _0$. For the WEIBULL2 option, specifying SIGMA=$\sigma _0$ and SLOPE=$\frac{1}{c_0}$ displays the same line as specifying SIGMA=$\sigma _0$ and C=$c_0$.



[11] The intercept and slope are based on the quantile scale for the horizontal axis, which is displayed on a Q-Q plot; see QQPLOT Statement: CAPABILITY Procedure.