Comparison of Two Samples of Repair Data

Nelson (2002) and Doganaksoy and Nelson (1998) show how the difference of MCFs from two samples can be used to compare the populations from which they are drawn. The RELIABILITY procedure provides Doganaksoy and Nelson’s confidence intervals for the pointwise difference of the two MCFs, which can be used to assess whether the difference is statistically significant.

Doganaksoy and Nelson (1998) give an example of two samples of locomotives with braking grids from two different production batches. Figure 14.35 contains a listing of the data. The variable ID is a unique identifier for individual locomotives. The variable Days provides the locomotive age in days. The variable Value is 1 if the age corresponds to a valve seat replacement or -1 if the age corresponds to the locomotive’s latest age (the current end of its history). The variable Sample is a group variable that identifies the grid production batch.

data grids;                                                    
   if _N_ < 40 then sample = 'Sample1';                       
   else sample = 'Sample2';                                   
   input ID$ Days value @@;                                   
   datalines;                                                     
S1-01 462  1    S1-01 730 -1    S1-02 364  1    S1-02 391  1  
S1-02 548  1    S1-02 724 -1    S1-03 302  1    S1-03 444  1  
S1-03 500  1    S1-03 730 -1    S1-04 250  1    S1-04 730 -1  
S1-05 500  1    S1-05 724 -1    S1-06  88  1    S1-06 724 -1  
S1-07 272  1    S1-07 421  1    S1-07 552  1    S1-07 625  1  
S1-07 719 -1    S1-08 481  1    S1-08 710 -1    S1-09 431  1  
S1-09 710 -1    S1-10 367  1    S1-10 710 -1    S1-11 635  1  
S1-11 650  1    S1-11 708 -1    S1-12 402  1    S1-12 700 -1  
S1-13  33  1    S1-13 687 -1    S1-14 287  1    S1-14 687 -1  
S1-15 317  1    S1-15 498  1    S1-15 657 -1    S2-01 203  1  
S2-01 211  1    S2-01 277  1    S2-01 373  1    S2-01 511 -1  
S2-02 293  1    S2-02 503 -1    S2-03 173  1    S2-03 470 -1  
S2-04 242  1    S2-04 464 -1    S2-05  39  1    S2-05 464 -1  
S2-06  91  1    S2-06 462 -1    S2-07 119  1    S2-07 148  1  
S2-07 306  1    S2-07 461 -1    S2-08 382  1    S2-08 460 -1  
S2-09 250  1    S2-09 434 -1    S2-10 192  1    S2-10 448 -1  
S2-11 369  1    S2-11 448 -1    S2-12  22  1    S2-12 447 -1  
S2-13  54  1    S2-13 441 -1    S2-14 194  1    S2-14 432 -1  
S2-15  61  1    S2-15 419 -1    S2-16  19  1    S2-16 185  1  
S2-16 419 -1    S2-17 187  1    S2-17 416 -1    S2-18  93  1  
S2-18 205  1    S2-18 264  1    S2-18 415 -1                  
;                                                             

Figure 14.35 Partial Listing of the Braking Grids Data
Obs sample ID Days value
1 Sample1 S1-01 462 1
2 Sample1 S1-01 730 -1
3 Sample1 S1-02 364 1
4 Sample1 S1-02 391 1
5 Sample1 S1-02 548 1
6 Sample1 S1-02 724 -1
7 Sample1 S1-03 302 1
8 Sample1 S1-03 444 1
9 Sample1 S1-03 500 1
10 Sample1 S1-03 730 -1
11 Sample1 S1-04 250 1
12 Sample1 S1-04 730 -1
13 Sample1 S1-05 500 1
14 Sample1 S1-05 724 -1
15 Sample1 S1-06 88 1
16 Sample1 S1-06 724 -1
17 Sample1 S1-07 272 1
18 Sample1 S1-07 421 1
19 Sample1 S1-07 552 1
20 Sample1 S1-07 625 1

The following statements request the Nelson (1995) nonparametric estimate and confidence limits for the difference of the MCF functions shown in Figure 14.36 for the braking grids:

proc reliability data=grids;
   unitid ID;
   mcfplot days*value(-1) = sample / mcfdiff;
run;

The MCFPLOT statement requests a plot of each MCF estimate as a function of age (provided by Days), and it specifies that the end of history for each system is identified by Value equal to -1. The variable Sample identifies the two samples of braking grids. The option MCFDIFF requests that the difference between the MCFs of the two groups given in the variable Sample be computed and plotted. Confidence limits for the MCF difference are also computed and plotted. The UNITID statement specifies that the variable Id uniquely identify each system.

Figure 14.36 shows the plot of the MCF difference function and pointwise 95% confidence intervals. Since the pointwise confidence limits do not include zero for some system ages, the difference between the two populations is statistically significant.

A listing of the tabular output is shown in Figure 14.37. It contains a summary of the repair data for the two samples, estimates, standard errors, and confidence intervals for the MCF difference.

Figure 14.36 Mean Cumulative Function Difference
Mean Cumulative Function Difference

Figure 14.37 Listing of the Output for the Braking Grids Data
MCF Difference Data Summary
Input Data Set WORK.GRIDS
Group 1 Sample1
Observations Used 39
Number of Units 15
Number of Events 24
Group 2 Sample2
Observations Used 44
Number of Units 18
Number of Events 26

Sample MCF Differences
Age MCF Difference Standard Error 95% Confidence Limits Unit ID
Lower Upper
19.00 -0.056 0.054 -0.161 0.050 S2-16
22.00 -0.111 0.074 -0.256 0.034 S2-12
33.00 -0.044 0.098 -0.237 0.148 S1-13
39.00 -0.100 0.109 -0.313 0.113 S2-05
54.00 -0.156 0.117 -0.385 0.074 S2-13
61.00 -0.211 0.124 -0.453 0.031 S2-15
88.00 -0.144 0.137 -0.414 0.125 S1-06
91.00 -0.200 0.142 -0.478 0.078 S2-06
93.00 -0.256 0.145 -0.539 0.028 S2-18
119.00 -0.311 0.146 -0.598 -0.024 S2-07
148.00 -0.367 0.167 -0.693 -0.040 S2-07
173.00 -0.422 0.166 -0.748 -0.097 S2-03
185.00 -0.478 0.182 -0.835 -0.120 S2-16
187.00 -0.533 0.180 -0.886 -0.181 S2-17
192.00 -0.589 0.177 -0.935 -0.243 S2-10
194.00 -0.644 0.172 -0.982 -0.307 S2-14
203.00 -0.700 0.167 -1.027 -0.373 S2-01
205.00 -0.756 0.178 -1.105 -0.407 S2-18
211.00 -0.811 0.188 -1.179 -0.443 S2-01
242.00 -0.867 0.180 -1.219 -0.514 S2-04
250.00 -0.856 0.179 -1.207 -0.504 S1-04,S2-09
264.00 -0.911 0.202 -1.307 -0.515 S2-18
272.00 -0.844 0.208 -1.252 -0.437 S1-07
277.00 -0.900 0.227 -1.345 -0.455 S2-01
287.00 -0.833 0.231 -1.286 -0.380 S1-14
293.00 -0.889 0.222 -1.323 -0.455 S2-02
302.00 -0.822 0.224 -1.262 -0.383 S1-03
306.00 -0.878 0.241 -1.350 -0.406 S2-07
317.00 -0.811 0.242 -1.286 -0.337 S1-15
364.00 -0.744 0.242 -1.219 -0.270 S1-02
367.00 -0.678 0.241 -1.150 -0.206 S1-10
369.00 -0.733 0.230 -1.185 -0.282 S2-11
373.00 -0.789 0.257 -1.293 -0.284 S2-01
382.00 -0.844 0.246 -1.327 -0.362 S2-08
391.00 -0.778 0.261 -1.290 -0.266 S1-02
402.00 -0.711 0.258 -1.217 -0.206 S1-12
421.00 -0.644 0.270 -1.174 -0.115 S1-07
431.00 -0.578 0.265 -1.097 -0.059 S1-09
444.00 -0.511 0.275 -1.049 0.027 S1-03
462.00 -0.444 0.267 -0.968 0.079 S1-01
481.00 -0.378 0.258 -0.883 0.128 S1-08
498.00 -0.311 0.265 -0.830 0.208 S1-15
500.00 -0.244 0.253 -0.741 0.252 S1-05
500.00 -0.178 0.275 -0.716 0.360 S1-03