Example 6.3 Facility Location

Consider the classic facility location problem. Given a set of customer locations and a set of candidate facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to these sites so as to minimize cost. All customer demand must be satisfied, and each facility has a demand capacity limit . The total cost is the sum of the distances between facility and its assigned customer , plus a fixed charge for building a facility at site . Let represent choosing site to build a facility, and 0 otherwise. Also, let represent the assignment of customer to facility , and 0 otherwise. This model can be formulated as the following integer linear program:

     

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is typically easier to solve than the original problem. For this variant, let the objective be

     

First, construct a random instance of this problem by using the following DATA steps:

title 'Facility Location Problem';
                                                                                                         
%let NumCustomers  = 50;
%let NumSites      = 10; 
%let SiteCapacity  = 35;
%let MaxDemand     = 10; 
%let xmax          = 200;
%let ymax          = 100; 
%let seed          = 938; 

/* generate random customer locations */                                                                                             
data cdata(drop=i);                                                                                                                  
   length name $8;                                                                                                                   
   do i = 1 to &NumCustomers;                                                                                                        
      name = compress('C'||put(i,best.));                                                                                            
      x = ranuni(&seed) * &xmax;                                                                                                     
      y = ranuni(&seed) * &ymax;                                                                                                     
      demand = ranuni(&seed) * &MaxDemand;                                                                                           
      output;                                                                                                                        
   end;                                                                                                                              
run;                                                                                                                                 

/* generate random site locations and fixed charge */                                                                                
data sdata(drop=i);                                                                                                                  
   length name $8;                                                                                                                   
   do i = 1 to &NumSites;                                                                                                            
      name = compress('SITE'||put(i,best.));                                                                                         
      x = ranuni(&seed) * &xmax;                                                                                                     
      y = ranuni(&seed) * &ymax;                                                                                                     
      fixed_charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));                                                                
      output;                                                                                                                        
   end;                                                                                                                              
run;                                                                                                                     

The following PROC OPTMODEL statements first generate and solve the model with the no-fixed-charge variant of the cost function. Next, they solve the fixed-charge model. Note that the solution to the model with no fixed charge is feasible for the fixed-charge model and should provide a good starting point for the MILP solver. Use the PRIMALIN option to provide an incumbent solution (warm start).

proc optmodel;
    set <str> CUSTOMERS;
    set <str> SITES init {};
    
    /* x and y coordinates of CUSTOMERS and SITES */
    num x {CUSTOMERS union SITES};
    num y {CUSTOMERS union SITES};
    num demand {CUSTOMERS};
    num fixed_charge {SITES};
    
    /* distance from customer i to site j */
    num dist {i in CUSTOMERS, j in SITES}
        = sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);
    
    read data cdata into CUSTOMERS=[name] x y demand;
    read data sdata into SITES=[name] x y fixed_charge;
    
    var Assign {CUSTOMERS, SITES} binary;
    var Build {SITES} binary;
    
    min CostNoFixedCharge
        = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];
    min CostFixedCharge
        = CostNoFixedCharge + sum {j in SITES} fixed_charge[j] * Build[j];
    
    /* each customer assigned to exactly one site */
    con assign_def {i in CUSTOMERS}:
       sum {j in SITES} Assign[i,j] = 1;
    
    /* if customer i assigned to site j, then facility must be built at j */
    con link {i in CUSTOMERS, j in SITES}:
        Assign[i,j] <= Build[j];
    
    /* each site can handle at most &SiteCapacity demand */
    con capacity {j in SITES}:
        sum {i in CUSTOMERS} demand[i] * Assign[i,j] <= 
            &SiteCapacity * Build[j];
    
    /* solve the MILP with no fixed charges */      
    solve obj CostNoFixedCharge with milp / printfreq = 500;      
    
    /* clean up the solution */
    for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
    for {j in SITES} Build[j] = round(Build[j]);
    
    call symput('varcostNo',put(CostNoFixedCharge,6.1));
    
    /* create a data set for use by GPLOT */
    create data CostNoFixedCharge_Data from
        [customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
        xi=x[i] yi=y[i] xj=x[j] yj=y[j];
    /* solve the MILP, with fixed charges with warm start */
    solve obj CostFixedCharge with milp / primalin printfreq = 500;
    
    /* clean up the solution */
    for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
    for {j in SITES} Build[j] = round(Build[j]);
    
    num varcost = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j].sol;
    num fixcost = sum {j in SITES} fixed_charge[j] * Build[j].sol;
    call symput('varcost', put(varcost,6.1));
    call symput('fixcost', put(fixcost,5.1));
    call symput('totalcost', put(CostFixedCharge,6.1));
    
    /* create a data set for use by GPLOT */
    create data CostFixedCharge_Data from
        [customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
        xi=x[i] yi=y[i] xj=x[j] yj=y[j];
 quit;   

The information printed in the log for the no-fixed-charge model is displayed in Output 6.3.1.

Output 6.3.1 OPTMODEL Log for Facility Location with No Fixed Charges
Facility Location Problem

NOTE: The problem has 510 variables (0 free, 0 fixed).                          
NOTE: The problem has 510 binary and 0 integer variables.                       
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, 0 GE, 0 range).    
NOTE: The problem has 2010 linear constraint coefficients.                      
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      
NOTE: The OPTMILP presolver value AUTOMATIC is applied.                         
NOTE: The OPTMILP presolver removed 10 variables and 500 constraints.           
NOTE: The OPTMILP presolver removed 1010 constraint coefficients.               
NOTE: The OPTMILP presolver modified 0 constraint coefficients.                 
NOTE: The presolved problem has 500 variables, 60 constraints, and 1000         
      constraint coefficients.                                                  
NOTE: The MIXED INTEGER LINEAR solver is called.                                
          Node  Active    Sols    BestInteger      BestBound      Gap    Time   
             0       1       2    972.1737321              0    972.2       0   
             0       1       2    972.1737321    961.2403449    1.14%       0   
             0       1       3    966.4832160    966.4832160    0.00%       0   
             0       0       3    966.4832160              .    0.00%       0   
NOTE: OPTMILP added 6 cuts with 360 cut coefficients at the root.               
NOTE: Optimal.                                                                  
NOTE: Objective = 966.483216.                                                   

The results from the warm start approach are shown in Output 6.3.2.

Output 6.3.2 OPTMODEL Log for Facility Location with Fixed Charges, Using Warm Start
Facility Location Problem

NOTE: The problem has 510 variables (0 free, 0 fixed).                          
NOTE: The problem uses 1 implicit variables.                                    
NOTE: The problem has 510 binary and 0 integer variables.                       
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, 0 GE, 0 range).    
NOTE: The problem has 2010 linear constraint coefficients.                      
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      
NOTE: The OPTMILP presolver value AUTOMATIC is applied.                         
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.              
NOTE: The OPTMILP presolver removed 0 constraint coefficients.                  
NOTE: The OPTMILP presolver modified 0 constraint coefficients.                 
NOTE: The presolved problem has 510 variables, 560 constraints, and 2010        
      constraint coefficients.                                                  
NOTE: The MIXED INTEGER LINEAR solver is called.                                
          Node  Active    Sols    BestInteger      BestBound      Gap    Time   
             0       1       3  16070.0150023              0    16070       0   
             0       1       3  16070.0150023   9946.2514269   61.57%       0   
             0       1       3  16070.0150023  10930.3459381   47.02%       0   
             0       1       3  16070.0150023  10935.7635056   46.95%       0   
             0       1       3  16070.0150023  10937.6002156   46.92%       0   
             0       1       3  16070.0150023  10940.1196005   46.89%       0   
             0       1       6  12678.8372466  10940.5372019   15.89%       0   
             0       1       7  10971.6925169  10940.5372019    0.28%       0   
NOTE: OPTMILP added 15 cuts with 463 cut coefficients at the root.              
             2       3       8  10970.7775646  10941.8374374    0.26%       0   
             9      10       9  10948.4603381  10941.8374374    0.06%       0   
            10      10      10  10948.4603380  10941.8374374    0.06%       0   
            30       0      10  10948.4603380              .    0.00%       1   
NOTE: Optimal.                                                                  
NOTE: Objective = 10948.4603.                                                   

The following two SAS programs produce a plot of the solutions for both variants of the model, using data sets produced by PROC OPTMODEL:

title1 h=1.5 "Facility Location Problem";                                                                                                 
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";                                                               
data csdata;                                                                                                                        
    set cdata(rename=(y=cy)) sdata(rename=(y=sy));                                                                                  
run;                                                                                                                                
/* create Annotate data set to draw line between customer and assigned site */                                                      
%annomac;                                                                                                                           
data anno(drop=xi yi xj yj);                                                                                                        
   %SYSTEM(2, 2, 2);                                                                                                               
   set CostNoFixedCharge_Data(keep=xi yi xj yj);                                                                                    
   %LINE(xi, yi, xj, yj, *, 1, 1);                                                                                                  
run;
proc gplot data=csdata anno=anno;                                                                                                   
   axis1 label=none order=(0 to &xmax by 10);                                                                                       
   axis2 label=none order=(0 to &ymax by 10);                                                                                       
   symbol1 value=dot interpol=none                                                                                                  
      pointlabel=("#name" nodropcollisions height=1) cv=black;                                                                   
   symbol2 value=diamond interpol=none                                                                                              
      pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;                                                                    
   plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;                                                                                
run;
quit;

The output of the first program is shown in Output 6.3.3.

Output 6.3.3 Solution Plot for Facility Location with No Fixed Charges
Solution Plot for Facility Location with No Fixed Charges

The output of the second program is shown in Output 6.3.4.

title1 "Facility Location Problem";                                                                                                 
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";                                                        
/* create Annotate data set to draw line between customer and assigned site */                                                      
data anno(drop=xi yi xj yj);                                                                                                        
   %SYSTEM(2, 2, 2);                                                                                                                
   set CostFixedCharge_Data(keep=xi yi xj yj);                                                                                      
   %LINE(xi, yi, xj, yj, *, 1, 1);                                                                                                  
run;
proc gplot data=csdata anno=anno;                                                                                                   
   axis1 label=none order=(0 to &xmax by 10);                                                                                       
   axis2 label=none order=(0 to &ymax by 10);                                                                                       
   symbol1 value=dot interpol=none                                                                                                  
      pointlabel=("#name" nodropcollisions height=1) cv=black;                                                                    
   symbol2 value=diamond interpol=none                                                                                              
      pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;                                                                    
   plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;                                                                                
run;
quit;

Output 6.3.4 Solution Plot for Facility Location with Fixed Charges
Solution Plot for Facility Location with Fixed Charges

The economic trade-off for the fixed-charge model forces you to build fewer sites and push more demand to each site.

It is possible to expedite the solution of the fixed-charge facility location problem by choosing appropriate branching priorities for the decision variables. Recall that for each site , the value of the variable determines whether or not a facility is built on that site. Suppose you decide to branch on the variables before the variables . You can set a higher branching priority for by using the .priority suffix for the Build variables in PROC OPTMODEL, as follows:

   for{j in SITES} Build[j].priority=10;

Setting higher branching priorities for certain variables is not guaranteed to speed up the MILP solver, but it can be helpful in some instances. The following program creates and solves an instance of the facility location problem, giving higher priority to the variables . The PRINTFREQ= option is used to abbreviate the node log.

   
    %let NumCustomers  = 45;    
    %let NumSites      = 8;    
    %let SiteCapacity  = 35;    
    %let MaxDemand     = 10;    
    %let xmax          = 200;    
    %let ymax          = 100;    
    %let seed          = 2345;

    /* generate random customer locations */
    data cdata(drop=i);
       length name $8;
       do i = 1 to &NumCustomers;
          name = compress('C'||put(i,best.));
          x = ranuni(&seed) * &xmax;
          y = ranuni(&seed) * &ymax;
          demand = ranuni(&seed) * &MaxDemand;
          output;
       end;
    run;

    /* generate random site locations and fixed charge */
    data sdata(drop=i);
       length name $8;
       do i = 1 to &NumSites;
          name = compress('SITE'||put(i,best.));
          x = ranuni(&seed) * &xmax;
          y = ranuni(&seed) * &ymax;
          fixed_charge = (abs(&xmax/2-x) + abs(&ymax/2-y)) / 2;
          output;
       end;
    run;                                                                                                                      
proc optmodel;                                                                                                                                                                                                                        
   set <str> CUSTOMERS;
   set <str> SITES init {};
   /* x and y coordinates of CUSTOMERS and SITES */
   num x {CUSTOMERS union SITES};
   num y {CUSTOMERS union SITES};
   num demand {CUSTOMERS};
   num fixed_charge {SITES};
       
   /* distance from customer i to site j */
   num dist {i in CUSTOMERS, j in SITES} 
       = sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);
   read data cdata into CUSTOMERS=[name] x y demand;
   read data sdata into SITES=[name] x y fixed_charge;
   var Assign {CUSTOMERS, SITES} binary;
   var Build {SITES} binary;
   min CostFixedCharge   
       = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j] 
         + sum {j in SITES} fixed_charge[j] * Build[j];
   
   /* each customer assigned to exactly one site */
   con assign_def {i in CUSTOMERS}:
      sum {j in SITES} Assign[i,j] = 1;
   /* if customer i assigned to site j, then facility must be built at j */
   con link {i in CUSTOMERS, j in SITES}:
       Assign[i,j] <= Build[j];
   /* each site can handle at most &SiteCapacity demand */
   con capacity {j in SITES}:
       sum {i in CUSTOMERS} demand[i] * Assign[i,j] <= &SiteCapacity * Build[j];
   /* assign priority to Build variables (y) */
   for{j in SITES} Build[j].priority=10;
   /* solve the MILP with fixed charges, using branching priorities */
   solve obj CostFixedCharge with milp / printfreq=1000;
   
quit;

The resulting output is shown in Output 6.3.5.

Output 6.3.5 PROC OPTMODEL Log for Facility Location with Branching Priorities
Facility Location Problem
TotalCost = 10948 (Variable = 1329.8, Fixed = 9619)

NOTE: There were 45 observations read from the data set WORK.CDATA.             
NOTE: There were 8 observations read from the data set WORK.SDATA.              
NOTE: The problem has 368 variables (0 free, 0 fixed).                          
NOTE: The problem has 368 binary and 0 integer variables.                       
NOTE: The problem has 413 linear constraints (368 LE, 45 EQ, 0 GE, 0 range).    
NOTE: The problem has 1448 linear constraint coefficients.                      
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      
NOTE: The OPTMILP presolver value AUTOMATIC is applied.                         
NOTE: The OPTMILP presolver removed 0 variables and 0 constraints.              
NOTE: The OPTMILP presolver removed 0 constraint coefficients.                  
NOTE: The OPTMILP presolver modified 0 constraint coefficients.                 
NOTE: The presolved problem has 368 variables, 413 constraints, and 1448        
      constraint coefficients.                                                  
NOTE: The MIXED INTEGER LINEAR solver is called.                                
          Node  Active    Sols    BestInteger      BestBound      Gap    Time   
             0       1       3   2823.1827978              0   2823.2       0   
             0       1       3   2823.1827978   1727.0208789   63.47%       0   
             0       1       3   2823.1827978   1763.3506901   60.10%       0   
             0       1       3   2823.1827978   1777.2135752   58.85%       0   
             0       1       3   2823.1827978   1784.9548182   58.17%       0   
             0       1       3   2823.1827978   1787.1819351   57.97%       0   
             0       1       3   2823.1827978   1793.2692707   57.43%       0   
             0       1       3   2823.1827978   1794.3938422   57.33%       0   
             0       1       3   2823.1827978   1795.3899713   57.25%       0   
             0       1       3   2823.1827978   1798.5234862   56.97%       0   
             0       1       3   2823.1827978   1799.5894342   56.88%       0   
             0       1       3   2823.1827978   1800.5233791   56.80%       0   
             0       1       3   2823.1827978   1800.6378795   56.79%       0   
             0       1       3   2823.1827978   1800.7748861   56.78%       0   
             0       1       5   1842.4563183   1801.0525162    2.30%       0   
             0       1       5   1842.4563183   1801.5520700    2.27%       0   
NOTE: OPTMILP added 31 cuts with 851 cut coefficients at the root.              
           107     103       7   1839.8099830   1802.5501263    2.07%       0   
           256     227       8   1835.4822150   1804.7295110    1.70%       1   
           257     207       9   1825.1665993   1804.7295110    1.13%       1   
           344     255      10   1823.4483964   1805.3755931    1.00%       1   
           380     281      11   1823.3287598   1805.7995246    0.97%       1   
           503     260      12   1819.9124350   1809.1789223    0.59%       1   
           752     125      13   1819.9124339   1815.3056997    0.25%       2   
           890       4      13   1819.9124339   1819.7542550    0.01%       2   
NOTE: Optimal within relative gap.                                              
NOTE: Objective = 1819.91243.