Previous Page | Next Page

The OPTQP Procedure

ODS Tables

PROC OPTQP creates two ODS (Output Delivery System) tables by default unless you specify a value other than 1 for the PRINTLEVEL= option. The first table, "ProblemSummary," is a summary of the input QP problem. The second table, "SolutionSummary," is a brief summary of the solution status. PROC OPTQP assigns a name to each table it creates. You can use these names to reference the table when using the ODS to select tables and create output data sets. These names are listed in Table 19.2. For more information about ODS, see the SAS Output Delivery System: Procedures Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then a third table, "ProblemStatistics," is produced. This table contains information about the problem data. See the section Problem Statistics for more information.

Table 19.2 ODS Tables Produced by PROC OPTQP

ODS Table Name

Description

PRINTLEVEL=

ProblemSummary

Summary of the input QP problem

1 (default)

SolutionSummary

Summary of the solution status

1 (default)

ProblemStatistics

Description of input problem data

2

A typical output of PROC OPTQP is shown in Output 19.5.

Figure 19.5 Typical OPTQP Output
The OPTQP Procedure

Problem Summary
Problem Name BANDM
Objective Sense Minimization
Objective Function ....1
RHS ZZZZ0001
   
Number of Variables 472
Bounded Above 0
Bounded Below 472
Bounded Above and Below 0
Free 0
Fixed 0
   
Number of Constraints 305
LE (<=) 0
EQ (=) 305
GE (>=) 0
Range 0
   
Constraint Coefficients 2494
   
Hessian Diagonal Elements 25
Hessian Elements Above the Diagonal 16

Solution Summary
Objective Function ....1
Solution Status Optimal
Objective Value 16352.342414
   
Primal Infeasibility 1.693635E-11
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 1.5407616E-7
Complementarity 0.004075344
   
Iterations 26
Presolve Time 0.00
Solution Time 0.08

You can create output data sets from these tables by using the ODS OUTPUT statement. This can be useful, for example, when you want to create a report to summarize multiple PROC OPTQP runs. The output data sets corresponding to the preceding output are shown in Output 19.6, where you can also find (in the row following the heading of each data set in the display) the variable names that are used in the table definition (template) of each table.

Figure 19.6 ODS Output Data Sets
Problem Summary

Obs Label1 cValue1 nValue1
1 Problem Name BANDM .
2 Objective Sense Minimization .
3 Objective Function ....1 .
4 RHS ZZZZ0001 .
5     .
6 Number of Variables 472 472.000000
7 Bounded Above 0 0
8 Bounded Below 472 472.000000
9 Bounded Above and Below 0 0
10 Free 0 0
11 Fixed 0 0
12     .
13 Number of Constraints 305 305.000000
14 LE (<=) 0 0
15 EQ (=) 305 305.000000
16 GE (>=) 0 0
17 Range 0 0
18     .
19 Constraint Coefficients 2494 2494.000000
20     .
21 Hessian Diagonal Elements 25 25.000000
22 Hessian Elements Above the Diagonal 16 16.000000



Solution Summary

Obs Label1 cValue1 nValue1
1 Objective Function ....1 .
2 Solution Status Optimal .
3 Objective Value 16352.342414 16352
4     .
5 Primal Infeasibility 1.693635E-11 1.693635E-11
6 Dual Infeasibility 0 0
7 Bound Infeasibility 0 0
8 Duality Gap 1.5407616E-7 0.000000154
9 Complementarity 0.004075344 0.004075
10     .
11 Iterations 26 26.000000
12 Presolve Time 0.00 0
13 Solution Time 0.08 0.078000

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of ) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTQP procedure causes the ODS table "ProblemStatistics" to be generated. This table provides basic data magnitude information that enables you to improve the formulation of your models.

The example output in Output 19.7 demonstrates the contents of the ODS table "ProblemStatistics."

Figure 19.7 ODS Table ProblemStatistics
 

The OPTQP Procedure

Problem Statistics
Number of Constraint Matrix Nonzeros 4
Maximum Constraint Matrix Coefficient 2
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.25
   
Number of Linear Objective Nonzeros 2
Maximum Linear Objective Coefficient 3
Minimum Linear Objective Coefficient 2
Average Linear Objective Coefficient 2.5
   
Number of Lower Triangular Hessian Nonzeros 1
Number of Diagonal Hessian Nonzeros 2
Maximum Hessian Coefficient 20
Minimum Hessian Coefficient 2
Average Hessian Coefficient 6.75
   
Number of RHS Nonzeros 2
Maximum RHS 100
Minimum RHS 1
Average RHS 50.5
   
Maximum Number of Nonzeros per Column 2
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2
   
Maximum Number of Nonzeros per Row 2
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

The variable names in the ODS table "ProblemStatistics" are Label, cValue, and nValue, similar to those shown in Figure 19.6 (but not shown in Figure 19.7).

Previous Page | Next Page | Top of Page