The OPTMODEL Procedure |
The Rosenbrock Problem |
You can use parameters to produce a clear formulation of a problem. Consider the Rosenbrock problem:
where is a parameter (constant), and are optimization variables (whose values are to be determined), and is an objective function.
Here is a PROC OPTMODEL program that solves the Rosenbrock problem:
proc optmodel; number alpha = 100; /* declare parameter */ var x {1..2}; /* declare variables */ /* objective function */ min f = alpha*(x[2] - x[1]**2)**2 + (1 - x[1])**2; /* now run the solver */ solve; print x; quit;
The PROC OPTMODEL output is shown in Figure 8.3.
Problem Summary | |
---|---|
Objective Sense | Minimization |
Objective Function | f |
Objective Type | Nonlinear |
Number of Variables | 2 |
Bounded Above | 0 |
Bounded Below | 0 |
Bounded Below and Above | 0 |
Free | 2 |
Fixed | 0 |
Number of Constraints | 0 |
Copyright © SAS Institute, Inc. All Rights Reserved.