Example 5.6: Adding Side Constraints, Using a Warm Start
The manufacturer of Gizmo chips, which are parts needed to make televisions,
can supply only 2600 chips to factory 1 and 3750 chips to factory 2 in time
for production in each of the months of March and April.
However, Gizmo chips will not be in short supply in May.
Three chips are required to make each 19-inch TV while the 25-inch
TVs require four chips each.
To limit the production of televisions produced at factory 1 in March
so that
the TVs have the correct number of chips, a side constraint called
FACT1 MAR GIZMO is used.
The form of this constraint is
3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600
"prod f1 19 mar" is the name of the arc directed from the
node fact1_1
toward node f1_mar_1 and, in the previous constraint, designates the flow
assigned to this arc.
The ARCDATA= and ARCOUT= data
sets have arc names in a variable
called _name_.
The other side constraints (shown below) are called
FACT2 MAR GIZMO , FACT1 APL GIZMO, and FACT2 APL GIZMO.
3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750
To maintain customer goodwill, the total number of backorders is not to exceed
50 sets.
The side constraint TOTAL BACKORDER that models this restriction is:
back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50
The sparse CONDATA= data set format is used.
All side constraints are less than or equal type.
Because this is the default type value for the DEFCONTYPE= option,
type information is not necessary in the following CONDATA=CON3.
Also, DEFCONTYPE= <= does not have to be specified in the PROC NETFLOW
statement that follows.
Notice that the _column_ variable value CHIP/BO LIMIT indicates that an
observation of the CON3 data set contains rhs information.
Therefore, specify RHSOBS='CHIP/BO LIMIT'.
title 'Adding Side Constraints and Using a Warm Start';
title2 'Production Planning/Inventory/Distribution';
data con3;
input _column_ &$14. _row_ &$15. _coef_ ;
datalines;
prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;
The four pairs of data sets that follow can be used
as ARCDATA= and NODEDATA= data sets
in the following PROC NETFLOW run.
The set used depends on which cost information the arcs are to
have and whether a warm start is to be used.
ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node2
ARCDATA=arc2 NODEDATA=node2
ARCDATA=arc3 NODEDATA=node3
arc0, node0, arc1, and node2 were created in Example 5.4.
The first two data sets are the original input data sets.
arc1 and node2 were the ARCOUT= and
NODEOUT= data sets
of a PROC NETFLOW run with FUTURE1 specified.
Now, if you use arc1 and node2 as the ARCDATA= data
set and NODEDATA= data set
in a PROC NETFLOW run, you can specify WARM, as these data sets contain
additional information describing a warm start.
In Example 5.5, arc2 was created by modifying arc1 to reflect
different arc costs.
arc2 and node2 can also be used as the ARCDATA=
and NODEDATA= data sets in a PROC NETFLOW run.
Again, specify WARM, as these data sets contain
additional information describing a warm start. This start, however,
contains the optimal basis using the original costs.
If you are going to continue optimization using the changed arc costs,
it is probably best to use arc3 and node3 as the
ARCDATA= and NODEDATA= data sets.
These data sets, created in Example 5.6 by PROC NETFLOW when the FUTURE1 option was specified,
contain an optimal basis that can be used as
a warm start.
PROC NETFLOW is used to find the changed cost network solution that
obeys the chip limit and backorder side constraints.
The FUTURE2 option is specified in case further processing is required.
An explicit ID list has also been specified so that the variables
oldcost, oldfc and oldflow do not appear in the subsequent output
data sets.
proc netflow
nodedata=node3 arcdata=arc3 warm
condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
future2 dualout=dual4 conout=con4;
id diagonal factory key_id mth_made;
proc print data=con4;
sum _fcost_;
proc print data=dual4;
run;
The following messages appear on the SAS log:
NOTE: The following 3 variables in ARCDATA do not belong to
any SAS variable list. These will be ignored.
oldcost
oldfc
oldflow
NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of iterations performed (neglecting any
constraints)= 1 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint
coefficients= 16 .
NOTE: Number of iterations, optimizing with constraints= 10 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1282708.625 .
NOTE: The data set WORK.CON4 has 68 observations and 18
variables.
NOTE: The data set WORK.DUAL4 has 27 observations and 14
variables.
Output 5.6.1: CONOUT=CON4
fact1_1 |
_EXCESS_ |
0.00 |
99999999 |
0 |
|
1000 |
200 |
5.000 |
0.00 |
. |
65 |
1 |
KEY_ARC BASIC |
. |
. |
|
|
fact2_1 |
_EXCESS_ |
0.00 |
99999999 |
0 |
|
850 |
200 |
45.000 |
0.00 |
. |
66 |
10 |
KEY_ARC BASIC |
. |
. |
|
|
fact1_2 |
_EXCESS_ |
0.00 |
99999999 |
0 |
|
1000 |
200 |
0.000 |
0.00 |
30.187 |
67 |
11 |
LOWERBD NONBASIC |
. |
. |
|
|
fact2_2 |
_EXCESS_ |
0.00 |
99999999 |
0 |
|
1500 |
200 |
150.000 |
0.00 |
. |
68 |
20 |
KEY_ARC BASIC |
. |
. |
|
|
fact1_1 |
f1_apr_1 |
78.60 |
600 |
50 |
prod f1 19 apl |
1000 |
. |
533.333 |
41920.00 |
. |
4 |
1 |
KEY_ARC BASIC |
19 |
1 |
production |
April |
f1_mar_1 |
f1_apr_1 |
15.00 |
50 |
0 |
|
. |
. |
0.000 |
0.00 |
63.650 |
5 |
2 |
LOWERBD NONBASIC |
19 |
1 |
storage |
March |
f1_may_1 |
f1_apr_1 |
33.60 |
20 |
0 |
back f1 19 may |
. |
. |
0.000 |
0.00 |
54.650 |
6 |
4 |
LOWERBD NONBASIC |
19 |
1 |
backorder |
May |
f2_apr_1 |
f1_apr_1 |
11.00 |
40 |
0 |
|
. |
. |
0.000 |
0.00 |
22.000 |
7 |
6 |
LOWERBD NONBASIC |
19 |
. |
f2_to_1 |
April |
fact1_2 |
f1_apr_2 |
174.50 |
550 |
50 |
prod f1 25 apl |
1000 |
. |
250.000 |
43625.00 |
. |
36 |
11 |
KEY_ARC BASIC |
25 |
1 |
production |
April |
f1_mar_2 |
f1_apr_2 |
20.00 |
40 |
0 |
|
. |
. |
0.000 |
0.00 |
94.210 |
37 |
12 |
LOWERBD NONBASIC |
25 |
1 |
storage |
March |
f1_may_2 |
f1_apr_2 |
49.20 |
15 |
0 |
back f1 25 may |
. |
. |
0.000 |
0.00 |
7.630 |
38 |
14 |
LOWERBD NONBASIC |
25 |
1 |
backorder |
May |
f2_apr_2 |
f1_apr_2 |
21.00 |
25 |
0 |
|
. |
. |
0.000 |
0.00 |
30.510 |
39 |
16 |
LOWERBD NONBASIC |
25 |
. |
f2_to_1 |
April |
fact1_1 |
f1_mar_1 |
127.90 |
500 |
50 |
prod f1 19 mar |
1000 |
. |
333.333 |
42633.33 |
. |
1 |
1 |
KEY_ARC BASIC |
19 |
1 |
production |
March |
f1_apr_1 |
f1_mar_1 |
33.60 |
20 |
0 |
back f1 19 apl |
. |
. |
20.000 |
672.00 |
. |
2 |
3 |
NONKEY ARC BASIC |
19 |
1 |
backorder |
April |
f2_mar_1 |
f1_mar_1 |
10.00 |
40 |
0 |
|
. |
. |
40.000 |
400.00 |
-34.750 |
3 |
5 |
UPPERBD NONBASIC |
19 |
. |
f2_to_1 |
March |
fact1_2 |
f1_mar_2 |
217.90 |
400 |
40 |
prod f1 25 mar |
1000 |
. |
400.000 |
87160.00 |
-31.677 |
33 |
11 |
UPPERBD NONBASIC |
25 |
1 |
production |
March |
f1_apr_2 |
f1_mar_2 |
38.40 |
30 |
0 |
back f1 25 apl |
. |
. |
30.000 |
1152.00 |
-20.760 |
34 |
13 |
UPPERBD NONBASIC |
25 |
1 |
backorder |
April |
f2_mar_2 |
f1_mar_2 |
20.00 |
25 |
0 |
|
. |
. |
25.000 |
500.00 |
-61.060 |
35 |
15 |
UPPERBD NONBASIC |
25 |
. |
f2_to_1 |
March |
fact1_1 |
f1_may_1 |
90.10 |
400 |
50 |
|
1000 |
. |
128.333 |
11562.83 |
. |
8 |
1 |
KEY_ARC BASIC |
19 |
1 |
production |
May |
f1_apr_1 |
f1_may_1 |
12.00 |
50 |
0 |
|
. |
. |
0.000 |
0.00 |
6.000 |
9 |
3 |
LOWERBD NONBASIC |
19 |
1 |
storage |
April |
f2_may_1 |
f1_may_1 |
13.00 |
40 |
0 |
|
. |
. |
0.000 |
0.00 |
29.000 |
10 |
7 |
LOWERBD NONBASIC |
19 |
. |
f2_to_1 |
May |
fact1_2 |
f1_may_2 |
113.30 |
350 |
40 |
|
1000 |
. |
350.000 |
39655.00 |
-11.913 |
40 |
11 |
UPPERBD NONBASIC |
25 |
1 |
production |
May |
f1_apr_2 |
f1_may_2 |
18.00 |
40 |
0 |
|
. |
. |
0.000 |
0.00 |
74.620 |
41 |
13 |
LOWERBD NONBASIC |
25 |
1 |
storage |
April |
f2_may_2 |
f1_may_2 |
13.00 |
25 |
0 |
|
. |
. |
0.000 |
0.00 |
39.000 |
42 |
17 |
LOWERBD NONBASIC |
25 |
. |
f2_to_1 |
May |
f1_apr_1 |
f2_apr_1 |
11.00 |
99999999 |
0 |
|
. |
. |
13.333 |
146.67 |
. |
14 |
3 |
KEY_ARC BASIC |
19 |
. |
f1_to_2 |
April |
fact2_1 |
f2_apr_1 |
62.40 |
480 |
35 |
prod f2 19 apl |
850 |
. |
480.000 |
29952.00 |
-14.077 |
15 |
10 |
UPPERBD NONBASIC |
19 |
2 |
production |
April |
f2_mar_1 |
f2_apr_1 |
18.00 |
30 |
0 |
|
. |
. |
0.000 |
0.00 |
10.900 |
16 |
5 |
LOWERBD NONBASIC |
19 |
2 |
storage |
March |
f2_may_1 |
f2_apr_1 |
30.00 |
15 |
0 |
back f2 19 may |
. |
. |
0.000 |
0.00 |
56.050 |
17 |
7 |
LOWERBD NONBASIC |
19 |
2 |
backorder |
May |
f1_apr_2 |
f2_apr_2 |
23.00 |
99999999 |
0 |
|
. |
. |
0.000 |
0.00 |
13.490 |
46 |
13 |
LOWERBD NONBASIC |
25 |
. |
f1_to_2 |
April |
fact2_2 |
f2_apr_2 |
196.70 |
680 |
35 |
prod f2 25 apl |
1500 |
. |
577.500 |
113594.25 |
. |
47 |
20 |
KEY_ARC BASIC |
25 |
2 |
production |
April |
f2_mar_2 |
f2_apr_2 |
28.00 |
50 |
0 |
|
. |
. |
0.000 |
0.00 |
11.640 |
48 |
15 |
LOWERBD NONBASIC |
25 |
2 |
storage |
March |
f2_may_2 |
f2_apr_2 |
64.80 |
15 |
0 |
back f2 25 may |
. |
. |
0.000 |
0.00 |
39.720 |
49 |
17 |
LOWERBD NONBASIC |
25 |
2 |
backorder |
May |
f1_mar_1 |
f2_mar_1 |
11.00 |
99999999 |
0 |
|
. |
. |
0.000 |
0.00 |
55.750 |
11 |
2 |
LOWERBD NONBASIC |
19 |
. |
f1_to_2 |
March |
fact2_1 |
f2_mar_1 |
88.00 |
450 |
35 |
prod f2 19 mar |
850 |
. |
290.000 |
25520.00 |
. |
12 |
10 |
KEY_ARC BASIC |
19 |
2 |
production |
March |
f2_apr_1 |
f2_mar_1 |
20.40 |
15 |
0 |
back f2 19 apl |
. |
. |
0.000 |
0.00 |
42.550 |
13 |
6 |
LOWERBD NONBASIC |
19 |
2 |
backorder |
April |
f1_mar_2 |
f2_mar_2 |
23.00 |
99999999 |
0 |
|
. |
. |
0.000 |
0.00 |
104.060 |
43 |
12 |
LOWERBD NONBASIC |
25 |
. |
f1_to_2 |
March |
fact2_2 |
f2_mar_2 |
182.00 |
650 |
35 |
prod f2 25 mar |
1500 |
. |
650.000 |
118300.00 |
-23.170 |
44 |
20 |
UPPERBD NONBASIC |
25 |
2 |
production |
March |
f2_apr_2 |
f2_mar_2 |
37.20 |
15 |
0 |
back f2 25 apl |
. |
. |
0.000 |
0.00 |
68.610 |
45 |
16 |
LOWERBD NONBASIC |
25 |
2 |
backorder |
April |
f1_may_1 |
f2_may_1 |
16.00 |
99999999 |
0 |
|
. |
. |
115.000 |
1840.00 |
. |
18 |
4 |
KEY_ARC BASIC |
19 |
. |
f1_to_2 |
May |
fact2_1 |
f2_may_1 |
128.80 |
250 |
35 |
|
850 |
. |
35.000 |
4508.00 |
22.700 |
19 |
10 |
LOWERBD NONBASIC |
19 |
2 |
production |
May |
f2_apr_1 |
f2_may_1 |
20.00 |
30 |
0 |
|
. |
. |
0.000 |
0.00 |
9.000 |
20 |
6 |
LOWERBD NONBASIC |
19 |
2 |
storage |
April |
f1_may_2 |
f2_may_2 |
26.00 |
99999999 |
0 |
|
. |
. |
350.000 |
9100.00 |
. |
50 |
14 |
KEY_ARC BASIC |
25 |
. |
f1_to_2 |
May |
fact2_2 |
f2_may_2 |
181.40 |
550 |
35 |
|
1500 |
. |
122.500 |
22221.50 |
. |
51 |
20 |
NONKEY ARC BASIC |
25 |
2 |
production |
May |
f2_apr_2 |
f2_may_2 |
38.00 |
50 |
0 |
|
. |
. |
0.000 |
0.00 |
78.130 |
52 |
16 |
LOWERBD NONBASIC |
25 |
2 |
storage |
April |
f1_mar_1 |
shop1_1 |
-327.65 |
250 |
0 |
|
. |
900 |
143.333 |
-46963.17 |
. |
21 |
2 |
KEY_ARC BASIC |
19 |
1 |
sales |
March |
f1_apr_1 |
shop1_1 |
-300.00 |
250 |
0 |
|
. |
900 |
250.000 |
-75000.00 |
-21.000 |
22 |
3 |
UPPERBD NONBASIC |
19 |
1 |
sales |
April |
f1_may_1 |
shop1_1 |
-285.00 |
250 |
0 |
|
. |
900 |
13.333 |
-3800.00 |
. |
23 |
4 |
NONKEY ARC BASIC |
19 |
1 |
sales |
May |
f2_mar_1 |
shop1_1 |
-297.40 |
250 |
0 |
|
. |
900 |
250.000 |
-74350.00 |
-14.500 |
24 |
5 |
UPPERBD NONBASIC |
19 |
2 |
sales |
March |
f2_apr_1 |
shop1_1 |
-290.00 |
250 |
0 |
|
. |
900 |
243.333 |
-70566.67 |
. |
25 |
6 |
NONKEY ARC BASIC |
19 |
2 |
sales |
April |
f2_may_1 |
shop1_1 |
-292.00 |
250 |
0 |
|
. |
900 |
0.000 |
0.00 |
9.000 |
26 |
7 |
LOWERBD NONBASIC |
19 |
2 |
sales |
May |
f1_mar_2 |
shop1_2 |
-559.76 |
99999999 |
0 |
|
. |
900 |
0.000 |
0.00 |
47.130 |
53 |
12 |
LOWERBD NONBASIC |
25 |
1 |
sales |
March |
f1_apr_2 |
shop1_2 |
-524.28 |
99999999 |
0 |
|
. |
900 |
0.000 |
0.00 |
8.400 |
54 |
13 |
LOWERBD NONBASIC |
25 |
1 |
sales |
April |
f1_may_2 |
shop1_2 |
-475.02 |
99999999 |
0 |
|
. |
900 |
0.000 |
0.00 |
1.040 |
55 |
14 |
LOWERBD NONBASIC |
25 |
1 |
sales |
May |
f2_mar_2 |
shop1_2 |
-567.83 |
500 |
0 |
|
. |
900 |
500.000 |
-283915.00 |
-42.000 |
56 |
15 |
UPPERBD NONBASIC |
25 |
2 |
sales |
March |
f2_apr_2 |
shop1_2 |
-542.19 |
500 |
0 |
|
. |
900 |
400.000 |
-216876.00 |
. |
57 |
16 |
KEY_ARC BASIC |
25 |
2 |
sales |
April |
f2_may_2 |
shop1_2 |
-491.56 |
500 |
0 |
|
. |
900 |
0.000 |
0.00 |
10.500 |
58 |
17 |
LOWERBD NONBASIC |
25 |
2 |
sales |
May |
f1_mar_1 |
shop2_1 |
-362.74 |
250 |
0 |
|
. |
900 |
250.000 |
-90685.00 |
-37.090 |
27 |
2 |
UPPERBD NONBASIC |
19 |
1 |
sales |
March |
f1_apr_1 |
shop2_1 |
-300.00 |
250 |
0 |
|
. |
900 |
250.000 |
-75000.00 |
-23.000 |
28 |
3 |
UPPERBD NONBASIC |
19 |
1 |
sales |
April |
f1_may_1 |
shop2_1 |
-245.00 |
250 |
0 |
|
. |
900 |
0.000 |
0.00 |
38.000 |
29 |
4 |
LOWERBD NONBASIC |
19 |
1 |
sales |
May |
f2_mar_1 |
shop2_1 |
-272.70 |
250 |
0 |
|
. |
900 |
0.000 |
0.00 |
8.200 |
30 |
5 |
LOWERBD NONBASIC |
19 |
2 |
sales |
March |
f2_apr_1 |
shop2_1 |
-312.00 |
250 |
0 |
|
. |
900 |
250.000 |
-78000.00 |
-24.000 |
31 |
6 |
UPPERBD NONBASIC |
19 |
2 |
sales |
April |
f2_may_1 |
shop2_1 |
-299.00 |
250 |
0 |
|
. |
900 |
150.000 |
-44850.00 |
. |
32 |
7 |
KEY_ARC BASIC |
19 |
2 |
sales |
May |
f1_mar_2 |
shop2_2 |
-623.89 |
99999999 |
0 |
|
. |
1450 |
455.000 |
-283869.95 |
. |
59 |
12 |
KEY_ARC BASIC |
25 |
1 |
sales |
March |
f1_apr_2 |
shop2_2 |
-549.68 |
99999999 |
0 |
|
. |
1450 |
220.000 |
-120929.60 |
. |
60 |
13 |
KEY_ARC BASIC |
25 |
1 |
sales |
April |
f1_may_2 |
shop2_2 |
-460.00 |
99999999 |
0 |
|
. |
1450 |
0.000 |
0.00 |
33.060 |
61 |
14 |
LOWERBD NONBASIC |
25 |
1 |
sales |
May |
f2_mar_2 |
shop2_2 |
-542.83 |
500 |
0 |
|
. |
1450 |
125.000 |
-67853.75 |
. |
62 |
15 |
KEY_ARC BASIC |
25 |
2 |
sales |
March |
f2_apr_2 |
shop2_2 |
-559.19 |
500 |
0 |
|
. |
1450 |
177.500 |
-99256.23 |
. |
63 |
16 |
KEY_ARC BASIC |
25 |
2 |
sales |
April |
f2_may_2 |
shop2_2 |
-519.06 |
500 |
0 |
|
. |
1450 |
472.500 |
-245255.85 |
. |
64 |
17 |
KEY_ARC BASIC |
25 |
2 |
sales |
May |
|
Output 5.6.2: DUALOUT=DUAL4
_ROOT_ |
238 |
0.00 |
22 |
0 |
8 |
5 |
3 |
166.000 |
-69 |
0 |
75 |
|
|
_EXCESS_ |
-200 |
-100000193.90 |
21 |
1 |
20 |
13 |
65 |
5.000 |
65 |
. |
. |
|
|
f1_apr_1 |
. |
-100000278.00 |
3 |
1 |
6 |
2 |
4 |
483.333 |
4 |
. |
. |
|
|
f1_apr_2 |
. |
-100000405.92 |
13 |
19 |
11 |
2 |
-60 |
220.000 |
36 |
. |
. |
|
|
f1_mar_1 |
. |
-100000326.65 |
2 |
8 |
1 |
20 |
-21 |
143.333 |
1 |
. |
. |
|
|
f1_mar_2 |
. |
-100000480.13 |
12 |
19 |
13 |
1 |
-59 |
455.000 |
33 |
. |
. |
|
|
f1_may_1 |
. |
-100000284.00 |
4 |
1 |
7 |
3 |
8 |
78.333 |
8 |
. |
. |
|
|
f1_may_2 |
. |
-100000349.30 |
14 |
17 |
15 |
1 |
-50 |
350.000 |
40 |
. |
. |
|
|
f2_apr_1 |
. |
-100000289.00 |
6 |
3 |
4 |
1 |
14 |
13.333 |
14 |
. |
. |
|
|
f2_apr_2 |
. |
-100000415.43 |
16 |
20 |
18 |
9 |
47 |
542.500 |
46 |
. |
. |
|
|
f2_mar_1 |
. |
-100000281.90 |
5 |
10 |
3 |
1 |
12 |
255.000 |
11 |
. |
. |
|
|
f2_mar_2 |
. |
-100000399.07 |
15 |
19 |
10 |
1 |
-62 |
125.000 |
43 |
. |
. |
|
|
f2_may_1 |
. |
-100000300.00 |
7 |
4 |
9 |
2 |
18 |
115.000 |
18 |
. |
. |
|
|
f2_may_2 |
. |
-100000375.30 |
17 |
19 |
14 |
2 |
-64 |
472.500 |
50 |
. |
. |
|
|
fact1_1 |
1000 |
-100000193.90 |
1 |
2 |
21 |
19 |
-1 |
283.333 |
-1 |
. |
. |
|
|
fact1_2 |
1000 |
-100000224.09 |
11 |
13 |
17 |
1 |
-36 |
200.000 |
-33 |
. |
. |
|
|
fact2_1 |
850 |
-100000193.90 |
10 |
21 |
5 |
2 |
-66 |
45.000 |
-33 |
. |
. |
|
|
fact2_2 |
1500 |
-100000193.90 |
20 |
21 |
16 |
10 |
-68 |
150.000 |
-65 |
. |
. |
|
|
shop1_1 |
-900 |
-99999999.00 |
8 |
22 |
2 |
21 |
0 |
0.000 |
21 |
. |
. |
|
|
shop1_2 |
-900 |
-99999873.24 |
18 |
16 |
19 |
1 |
57 |
400.000 |
53 |
. |
. |
|
|
shop2_1 |
-900 |
-100000001.00 |
9 |
7 |
22 |
1 |
32 |
150.000 |
27 |
. |
. |
|
|
shop2_2 |
-1450 |
-99999856.24 |
19 |
16 |
12 |
7 |
63 |
177.500 |
59 |
. |
. |
|
|
|
. |
-1.83 |
2 |
8 |
. |
. |
25 |
243.333 |
. |
2600 |
2600 |
LE |
FACT1 APL GIZMO |
|
. |
-1.62 |
0 |
8 |
. |
. |
23 |
13.333 |
. |
2600 |
2600 |
LE |
FACT1 MAR GIZMO |
|
. |
-6.21 |
3 |
17 |
. |
. |
51 |
87.500 |
. |
3750 |
3750 |
LE |
FACT2 APL GIZMO |
|
. |
0.00 |
1 |
1 |
. |
1 |
. |
280.000 |
. |
3470 |
3750 |
LE |
FACT2 MAR GIZMO |
|
. |
-15.05 |
4 |
2 |
. |
. |
2 |
20.000 |
. |
50 |
50 |
LE |
TOTAL BACKORDER |
|