The NETFLOW Procedure |
Let be the basis matrix of NPSC. The following partitioning is done:
where
It is more convenient to factor by block triangular matrices and , such that . The matrices and are used instead of because they are less burdensome to work with. You can perform block substitution when solving the simplex iteration linear systems of equations
where and is called the working basis matrix.
To perform block substitution, you need the tree data structure of the matrix, and also the , , and matrices. Because the matrix consists of columns of the constraint coefficient matrix, the maintenance of from iteration to iteration simply entails changing information specifying which columns of the constraint coefficient matrix compose .
The matrix is usually very sparse. Fortunately, the information in can be initialized easily using the tree structures. In most iterations, only one column is replaced by a new one. The values of the elements of the new column may already be known from preceding steps of the simplex iteration.
The working basis matrix is the submatrix that presents the most computational complexity. However, PROC NETFLOW usually can use classical simplex pivot techniques. In many iterations, only one column of changes. Sometimes it is not necessary to update or its inverse at all.
If INVD_2D is specified in the PROC NETFLOW statement, only one row and one column may need to be changed in the before the next simplex iteration can begin. The new contents of the changed column are already known. The new elements of the row that changes are influenced by the contents of a row of that is very sparse.
If INVD_2D is not specified in the PROC NETFLOW statement, the Bartels-Golub update can be used to update the LU factors of . The choice must be made whether to perform a series of updates (how many depends on the number of nonzeros in a row of ), or refactorization.
Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.