In this example, the linear component of the same problem definition as in Example 3.1 is described by using the OPTMODEL procedure and is saved as an MPS data set. The quadratic component of the objective is then defined by using the FCMP function QUADOBJ.
As in Using MPS Format, you can use the macro definition lsompsmod
to strip brackets from the resulting data set:
%macro lsompsmod(setold,setnew); data &setnew(drop=i); set &setold; array FC{*} _CHARACTER_; do i=1 to dim(FC); FC[i] = compress(FC[i], "[]"); end; run; %mend;
For more complicated array structures, take care to ensure that the resulting transformation is well defined. Next you run a PROC OPTMODEL step that outputs a MPS data set, followed by the %LSOMPSMOD macro, followed by the PROC FCMP step that defines the FCMP function QUADOBJ, followed by a PROC OPTLSO step that takes as input both the MPS data set that was output by PROC OPTMODEL and transformed by the %LSOMPSMOD macro and the quadratic component of the objective that was defined by PROC FCMP.
proc optmodel; var x{1..13} >= 0 <= 1; for {i in 10..12} x[i].ub = 100; min linobj = 5*sum{i in 1..4} x[i] - sum{i in 5..13} x[i]; con a1: 2*x[1] + 2*x[2] + x[10] + x[11] <= 10; con a2: 2*x[1] + 2*x[3] + x[10] + x[12] <= 10; con a3: 2*x[1] + 2*x[3] + x[11] + x[12] <= 10; con a4: -8*x[1] + x[10] <= 0; con a5: -8*x[2] + x[11] <= 0; con a6: -8*x[3] + x[12] <= 0; con a7: -2*x[4] - x[5] + x[10] <= 0; con a8: -2*x[6] - x[7] + x[11] <= 0; con a9: -2*x[8] - x[9] + x[12] <= 0; save mps lindataOld; quit; %lsompsmod(lindataOld, lindata); proc fcmp outlib=sasuser.myfuncs.mypkg; function quadobj(x1,x2,x3,x4,f1); return (f1 - 5*(x1**2 + x2**2 + x3**2 + x4**2)); endsub; run; data objdata; input _id_ $ _function_ $ _sense_ $; datalines; f1 linobj . f quadobj min ; options cmplib = sasuser.myfuncs; proc optlso primalout = solution mpsdata = lindata objective = objdata; performance nthreads=2; run; proc print data=solution; run;
Output 3.4.1 shows the output from running these steps.
Output 3.4.1: Using MPS Format
Problem Summary | |
---|---|
Problem Type | NLP |
MPS Data Set | LINDATA |
Objective Definition Set | OBJDATA |
Number of Variables | 13 |
Integer Variables | 0 |
Continuous Variables | 13 |
Number of Constraints | 9 |
Linear Constraints | 9 |
Nonlinear Constraints | 0 |
Objective Definition Source | OBJDATA |
Objective Sense | Minimize |
Objective Intermediate Functions | 1 |
Obs | _sol_ | _id_ | _value_ |
---|---|---|---|
1 | 0 | _obj_ | -15.0010 |
2 | 0 | _inf_ | 0.0010 |
3 | 0 | x1 | 1.0000 |
4 | 0 | x2 | 1.0000 |
5 | 0 | x3 | 1.0000 |
6 | 0 | x4 | 1.0000 |
7 | 0 | x5 | 1.0000 |
8 | 0 | x6 | 1.0000 |
9 | 0 | x7 | 1.0000 |
10 | 0 | x8 | 1.0000 |
11 | 0 | x9 | 1.0000 |
12 | 0 | x10 | 3.0000 |
13 | 0 | x11 | 3.0000 |
14 | 0 | x12 | 3.0010 |
15 | 0 | x13 | 1.0000 |
16 | 0 | f | -15.0010 |
17 | 0 | f1 | 4.9990 |
18 | 0 | linobj | 4.9990 |