The nonstationary SSM is simulated to analyze the diffuse Kalman filter call KALDFF. The transition equation is generated by using the formula
![\[ \left[ \begin{array}{c} z_{1t} \\ z_{2t} \end{array} \right] = \left[ \begin{array}{cc} 1.5 & -0.5 \\ 1.0 & 0.0 \end{array} \right] \left[ \begin{array}{c} z_{1t-1} \\ z_{2t-1} \end{array} \right] + \left[ \begin{array}{c} \eta _{1t} \\ 0 \end{array} \right] \]](images/imlug_timeseriesexpls0070.png)
where
. The transition equation is nonstationary because the transition matrix
has one unit root. The following program simulates a time series:
title 'Diffuse Kalman Filtering';
proc iml;
T = 20;
y = j(T,1);
burnIn = 10;
z_1 = 0; z_2 = 0;
do i = 1-burnIn to T;
z = 1.5*z_1 - 0.5*z_2 + rannor(1234567);
z_2 = z_1; z_1 = z;
x = z + 0.8*rannor(1234567);
if ( i > 0 ) then
y[i] = x;
end;
The KALDFF and KALCVF calls produce one-step prediction, and the following program shows that two predictions coincide after the fifth observation. See Output 14.3.1.
h = { 1 0 };
f = { 1.5 -.5, 1 0 };
rt = .64;
vt = diag({1 0});
ny = nrow(h);
nz = ncol(h);
nb = nz;
nd = nz;
a = j(nz,1,0);
b = j(ny,1,0);
int = j(ny+nz,nb,0);
coef = f // h;
var = ( vt || j(nz,ny,0) ) //
( j(ny,nz,0) || rt );
intd = j(nz+nb,1,0);
coefd = i(nz) // j(nb,nd,0);
at = j(t*nz,nd+1,0);
mt = j(t*nz,nz,0);
qt = j(t*(nd+1),nd+1,0);
n0 = -1;
call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,
coef,var,intd,coefd,n0,at,mt,qt);
call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
print kalcvf_p kaldff_p;
Output 14.3.1: Diffuse Kalman Filtering
| Diffuse Kalman Filtering |
| kalcvf_p | kaldff_p | ||
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1.441911 | 0.961274 | 1.1214871 | 0.9612746 |
| -0.882128 | -0.267663 | -0.882138 | -0.267667 |
| -0.723156 | -0.527704 | -0.723158 | -0.527706 |
| 1.2964969 | 0.871659 | 1.2964968 | 0.8716585 |
| -0.035692 | 0.1379633 | -0.035692 | 0.1379633 |
| -2.698135 | -1.967344 | -2.698135 | -1.967344 |
| -5.010039 | -4.158022 | -5.010039 | -4.158022 |
| -9.048134 | -7.719107 | -9.048134 | -7.719107 |
| -8.993153 | -8.508513 | -8.993153 | -8.508513 |
| -11.16619 | -10.44119 | -11.16619 | -10.44119 |
| -10.42932 | -10.34166 | -10.42932 | -10.34166 |
| -8.331091 | -8.822777 | -8.331091 | -8.822777 |
| -9.578258 | -9.450848 | -9.578258 | -9.450848 |
| -6.526855 | -7.241927 | -6.526855 | -7.241927 |
| -5.218651 | -5.813854 | -5.218651 | -5.813854 |
| -5.01855 | -5.291777 | -5.01855 | -5.291777 |
| -6.5699 | -6.284522 | -6.5699 | -6.284522 |
| -4.613301 | -4.995434 | -4.613301 | -4.995434 |
| -5.057926 | -5.09007 | -5.057926 | -5.09007 |
The likelihood function for the diffuse Kalman filter under the finite initial covariance matrix
is written as
![\[ \lambda (\mb{y}) = -\frac{1}{2}[\mb{y}^\# \log (\hat{\sigma }^2) + \sum _{t=1}^ T \log (|\bD _ t|)] \]](images/imlug_timeseriesexpls0073.png)
where
is the dimension of the matrix
. The likelihood function for the diffuse Kalman filter under the diffuse initial covariance matrix
is computed as
, where the
matrix is the upper
matrix of
. Output 14.3.2 displays the log likelihood and the diffuse log likelihood, as computed by the following statements:
d = 0; do i = 1 to t; dt = h*mt[(i-1)*nz+1:i*nz,]*h` + rt; d = d + log(det(dt)); end; s = qt[(t-1)*(nd+1)+1:t*(nd+1)-1,1:nd]; log_l = -(t*log(s2) + d)/2; dff_logl = log_l - log(det(s))/2; print log_l[L='Log L'] dff_logl[L='Diffuse Log L']; quit;