MAD (x <, method> );
The MAD function computes the univariate (scaled) median absolute deviation of each column of the input matrix.
The arguments to the MAD function are as follows:
is an
input data matrix.
is an optional string argument with the following values:
for computing the median absolute deviation (MAD); this is the default.
for computing the normalized version of MAD
for computing
for computing
For simplicity, the following descriptions assume that the input argument x is a column vector. The notation
means the ith element of the column vector x.
The MAD function can be used for computing one of the following three robust scale estimates:
median absolute deviation (MAD) or normalized form of MAD,
![\[ \mbox{MAD}_ n = b * med_ i^ n \; |x_ i - med_ j^ n \; x_ j| \]](images/imlug_langref0736.png)
where
is the unscaled default and
is used for the scaled version (consistency with the Gaussian distribution).
, which is a more efficient alternative to MAD,
![\[ S_ n = c_ n * med_ i \; med_{j} \; |x_ i - x_ j| \]](images/imlug_langref0739.png)
where the outer median is a low median (order statistic of rank
) and the inner median is a high median (order statistic of rank
), and where
is a scalar that depends on sample size n.
is another efficient alternative to MAD. It is based on the kth-order statistic of the
inter-point distances,
![\[ Q_ n = d_ n * \{ |x_ i - x_ j|; \quad i < j \} _{(k)} \quad \mbox{with} \quad k \approx {n \choose 2}/ 4 \]](images/imlug_langref0744.png)
where
is a scalar similar to but different from
. See Rousseeuw and Croux (1993) for more details.
The scalars
and
are defined as follows:
![\[ c_ n = 1.1926 * \left\{ \begin{array}{ll} 0.743 & \mbox{for n=2} \\ 1.851 & \mbox{for n=3} \\ 0.954 & \mbox{for n=4} \\ 1.351 & \mbox{for n=5} \\ 0.993 & \mbox{for n=6} \\ 1.198 & \mbox{for n=7} \\ 1.005 & \mbox{for n=8} \\ 1.131 & \mbox{for n=9} \\ n/(n - 0.9) & \mbox{for other odd n} \\ 1.0 & \mbox{otherwise} \end{array} \right. \qquad d_ n = 2.2219 * \left\{ \begin{array}{ll} 0.399 & \mbox{for n=2} \\ 0.994 & \mbox{for n=3} \\ 0.512 & \mbox{for n=4} \\ 0.844 & \mbox{for n=5} \\ 0.611 & \mbox{for n=6} \\ 0.857 & \mbox{for n=7} \\ 0.669 & \mbox{for n=8} \\ 0.872 & \mbox{for n=9} \\ n/(n + 1.4) & \mbox{for other odd n} \\ n/(n + 3.8) & \mbox{otherwise} \end{array} \right. \qquad \]](images/imlug_langref0746.png)
The following example uses the univariate data set of Barnett and Lewis (1978). The data set is used in Chapter 13 to illustrate the univariate LMS and LTS estimates.
b = {3, 4, 7, 8, 10, 949, 951};
rmad1 = mad(b);
rmad2 = mad(b,"mad");
rmad3 = mad(b,"nmad");
rmad4 = mad(b,"sn");
rmad5 = mad(b,"qn");
print "Default MAD=" rmad1,
"Common MAD =" rmad2,
"MAD*1.4826 =" rmad3,
"Robust S_n =" rmad4,
"Robust Q_n =" rmad5;
Figure 25.203: Median Absolute Deviations