Graphics Examples |
With the viewport capability of the IML graphics subroutine, you can arrange several graphs on a page. In this example, multiple graphs are generated from three variables and are displayed in a scatterplot matrix. For each variable, one contour plot is generated with each of the other variables as the dependent variable. For the graphs on the main diagonal, a box-and-whiskers plot is generated for each variable.
This example takes advantage of user-defined IML modules:
computes median and quartiles.
draws box-and-whiskers plots.
generates confidence ellipses assuming bivariate normal data.
draws the confidence ellipses for each pair of variables.
produces the scatter plot matrix, where is the number of variables.
The code for the five modules and a sample data set follow. The modules produce Figure 15.1.1 and Figure 15.1.2.
/* This program generates a data set and uses iml graphics */ /* subsystem to draw a scatterplot matrix. */ /* */ data factory; input recno prod temp a defect mon; datalines; 1 1.82675 71.124 1.12404 1.79845 2 2 1.67179 70.9245 0.924523 1.05246 3 3 2.22397 71.507 1.50696 2.36035 4 4 2.39049 74.8912 4.89122 1.93917 5 5 2.45503 73.5338 3.53382 2.0664 6 6 1.68758 71.6764 1.67642 1.90495 7 7 1.98233 72.4222 2.42221 1.65469 8 8 1.17144 74.0884 4.08839 1.91366 9 9 1.32697 71.7609 1.76087 1.21824 10 10 1.86376 70.3978 0.397753 1.21775 11 11 1.25541 74.888 4.88795 1.87875 12 12 1.17617 73.3528 3.35277 1.15393 1 13 2.38103 77.1762 7.17619 2.26703 2 14 1.13669 73.0157 3.01566 1 3 15 1.01569 70.4645 0.464485 1 4 16 2.36641 74.1699 4.16991 1.73009 5 17 2.27131 73.1005 3.10048 1.79657 6 18 1.80597 72.6299 2.62986 1.8497 7 19 2.41142 81.1973 11.1973 2.137 8 20 1.69218 71.4521 1.45212 1.47894 9 21 1.95271 74.8427 4.8427 1.93493 10 22 1.28452 76.7901 6.79008 2.09208 11 23 1.51663 83.4782 13.4782 1.81162 12 24 1.34177 73.4237 3.42369 1.57054 1 25 1.4309 70.7504 0.750369 1.22444 2 26 1.84851 72.9226 2.92256 2.04468 3 27 2.08114 78.4248 8.42476 1.78175 4 28 1.99175 71.0635 1.06346 1.25951 5 29 2.01235 72.2634 2.2634 1.36943 6 30 2.38742 74.2037 4.20372 1.82846 7 31 1.28055 71.2495 1.24953 1.8286 8 32 2.05698 76.0557 6.05571 2.03548 9 33 1.05429 77.721 7.72096 1.57831 10 34 2.15398 70.8861 0.886068 2.1353 11 35 2.46624 70.9682 0.968163 2.26856 12 36 1.4406 73.5243 3.52429 1.72608 1 37 1.71475 71.527 1.52703 1.72932 2 38 1.51423 78.5824 8.5824 1.97685 3 39 2.41538 73.7909 3.79093 2.07129 4 40 2.28402 71.131 1.13101 2.25293 5 41 1.70251 72.3616 2.36156 2.04926 6 42 1.19747 72.3894 2.3894 1 7 43 1.08089 71.1729 1.17288 1 8 44 2.21695 72.5905 2.59049 1.50915 9 45 1.52717 71.1402 1.14023 1.88717 10 46 1.5463 74.6696 4.66958 1.25725 11 47 2.34151 90 20 3.57864 12 48 1.10737 71.1989 1.19893 1.62447 1 49 2.2491 76.6415 6.64147 2.50868 2 50 1.76659 71.7038 1.70377 1.231 3 51 1.25174 76.9657 6.96572 1.99521 4 52 1.81153 73.0722 3.07225 2.15915 5 53 1.72942 71.9639 1.96392 1.86142 6 54 2.17748 78.1207 8.12068 2.54388 7 55 1.29186 77.0589 7.05886 1.82777 8 56 1.92399 72.6126 2.61256 1.32816 9 57 1.38008 70.8872 0.887228 1.37826 10 58 1.96143 73.8529 3.85289 1.87809 11 59 1.61795 74.6957 4.69565 1.65806 12 60 2.02756 75.7877 5.78773 1.72684 1 61 2.41378 75.9826 5.98255 2.76309 2 62 1.41413 71.3419 1.34194 1.75285 3 63 2.31185 72.5469 2.54685 2.27947 4 64 1.94336 71.5592 1.55922 1.96157 5 65 2.094 74.7338 4.73385 2.07885 6 66 1.19458 72.233 2.23301 1 7 67 2.13118 79.1225 9.1225 1.84193 8 68 1.48076 87.0511 17.0511 2.94927 9 69 1.98502 79.0913 9.09131 2.47104 10 70 2.25937 73.8232 3.82322 2.49798 12 71 1.18744 70.6821 0.682067 1.2848 1 72 1.20189 70.7053 0.705311 1.33293 2 73 1.69115 73.9781 3.9781 1.87517 3 74 1.0556 73.2146 3.21459 1 4 75 1.59936 71.4165 1.41653 1.29695 5 76 1.66044 70.7151 0.715145 1.22362 6 77 1.79167 74.8072 4.80722 1.86081 7 78 2.30484 71.5028 1.50285 1.60626 8 79 2.49073 71.5908 1.59084 1.80815 9 80 1.32729 70.9077 0.907698 1.12889 10 81 2.48874 83.0079 13.0079 2.59237 11 82 2.46786 84.1806 14.1806 3.35518 12 83 2.12407 73.5826 3.58261 1.98482 1 84 2.46982 76.6556 6.65559 2.48936 2 85 1.00777 70.2504 0.250364 1 3 86 1.93118 73.9276 3.92763 1.84407 4 87 1.00017 72.6359 2.63594 1.3882 5 88 1.90622 71.047 1.047 1.7595 6 89 2.43744 72.321 2.32097 1.67244 7 90 1.25712 90 20 2.63949 8 91 1.10811 71.8299 1.82987 1 9 92 2.25545 71.8849 1.8849 1.94247 10 93 2.47971 73.4697 3.4697 1.87842 11 94 1.93378 74.2952 4.2952 1.52478 12 95 2.17525 73.0547 3.05466 2.23563 1 96 2.18723 70.8299 0.829929 1.75177 2 97 1.69984 72.0026 2.00263 1.45564 3 98 1.12504 70.4229 0.422904 1.06042 4 99 2.41723 73.7324 3.73238 2.18307 5 ; proc iml; /*-- Load graphics --*/ call gstart; /*--------------------*/ /*-- Define modules --*/ /*--------------------*/ /* Module : compute contours */ start contour(c,x,y,npoints,pvalues); /* This routine computes contours for a scatter plot */ /* c returns the contours as consecutive pairs of columns */ /* x and y are the x and y coordinates of the points */ /* npoints is the number of points in a contour */ /* pvalues is a column vector of contour probabilities */ /* the number of contours is controlled by the ncol(pvalue) */ xx=x||y; n=nrow(x); /* Correct for the mean */ mean=xx[+,]/n; xx=xx-mean@j(n,1,1); /* Find principal axes of ellipses */ xx=xx` *xx/n; call eigen(v,e,xx); /* Set contour levels */ c=-2*log(1-pvalues); a=sqrt(c*v[1]); b=sqrt(c*v[2]); /* Parameterize the ellipse by angle */ t=((1:npoints)-{1})#atan(1)#8/(npoints-1); s=sin(t); t=cos(t); s=s` *a; t=t` *b; /* Form contour points */ s=((e*(shape(s,1)//shape(t,1)))+mean`@j(1,npoints*ncol(c),1))`; c=shape(s,npoints); /* Returned as ncol pairs of columns for contours */ finish contour; /*-- Module : draw contour curves --*/ start gcontour(t1, t2); run contour(t12, t1, t2, 30, {.5 .8 .9}); window=(min(t12[,{1 3}],t1)||min(t12[,{2 4}],t2))// (max(t12[,{1 3}],t1)||max(t12[,{2 4}],t2)); call gwindow(window); call gdraw(t12[,1],t12[,2],,'blue'); call gdraw(t12[,3],t12[,4],,'blue'); call gdraw(t12[,5],t12[,6],,'blue'); call gpoint(t1,t2,,'red'); finish gcontour; /*-- Module : find median, quartiles for box and whisker plot --*/ start boxwhskr(x, u, q2, m, q1, l); rx=rank(x); s=x; s[rx,]=x; n=nrow(x); /*-- Median --*/ m=floor(((n+1)/2)||((n+2)/2)); m=(s[m,])[+,]/2; /*-- Compute quartiles --*/ q1=floor(((n+3)/4)||((n+6)/4)); q1=(s[q1,])[+,]/2; q2=ceil(((3*n+1)/4)||((3*n-2)/4)); q2=(s[q2,])[+,]/2; h=1.5*(q2-q1); /*-- step=1.5*(interquartile range) --*/ u=q2+h; l=q1-h; u=(u>s)[+,]; /*-- adjacent values -----------------*/ u=s[u,]; l=(l>s)[+,]; l=s[l+1,]; finish boxwhskr; /*-- Box and Whisker plot --*/ start gbxwhskr(t, ht); run boxwhskr(t, up, q2,med, q1, lo); /*---Adjust screen viewport and data window */ y=min(t)//max(t); call gwindow({0, 100} || y); mid = 50; wlen = 20; /*-- Add whiskers */ wstart=mid-(wlen/2); from=(wstart||up)//(wstart||lo); to=((wstart//wstart)+wlen)||from[,2]; /*-- Add box */ len=50; wstart=mid-(len/2); wstop=wstart+len; from=from//(wstart||q2)//(wstart||q1)// (wstart||q2)//(wstop||q2); to=to//(wstop||q2)//(wstop||q1)// (wstart||q1)//(wstop||q1); /*---Add median line */ from=from//(wstart||med); to=to//(wstop||med); /*---Attach whiskers to box */ from=from//(mid||up)//(mid||lo); to=to//(mid||q2)//(mid||q1); /*-- Draw box and whiskers */ call gdrawl(from, to,,'red'); /*---Add minimum and maximum data points */ call gpoint(mid, y ,3,'red'); /*---Label min, max, and mean */ y=med//y; s={'med' 'min' 'max'}; call gset("font","swiss"); call gset('height',13); call gscript(wstop+ht, y, char(y,5,2),,,,,'blue'); call gstrlen(len, s); call gscript(wstart-len-ht,y,s,,,,,'blue'); call gset('height'); finish gbxwhskr; /*-- Module : do scatter plot matrix --*/ start gscatmat(data, vname); call gopen('scatter'); nv=ncol(vname); if (nv=1) then nv=nrow(vname); cellwid=int(90/nv); dist=0.1*cellwid; width=cellwid-2*dist; xstart=int((90 -cellwid * nv)/2) + 5; xgrid=((0:nv)#cellwid + xstart)`; /*-- Delineate cells --*/ cell1=xgrid; cell1=cell1||(cell1[nv+1]//cell1[nv+1-(0:nv-1)]); cell2=j(nv+1, 1, xstart); cell2=cell1[,1]||cell2; call gdrawl(cell1, cell2); call gdrawl(cell1[,{2 1}], cell2[,{2 1}]); xstart = xstart + dist; ystart = xgrid[nv] + dist; /*-- Label variables ---*/ call gset("height", 5); call gset("font","swiss"); call gstrlen(len, vname); where=xgrid[1:nv] + (cellwid-len)/2; call gscript(where, 0, vname) ; len=len[nv-(0:nv-1)]; where=xgrid[1:nv] + (cellwid-len)/2; call gscript(4,where, vname[nv - (0:nv-1)],90); /*-- First viewport --*/ vp=(xstart || ystart)//((xstart || ystart) + width) ; /* Since the characters are scaled to the viewport */ /* (which is inversely porportional to the */ /* number of variables), */ /* enlarge it proportional to the number of variables */ ht=2*nv; call gset("height", ht); do i=1 to nv; do j=1 to i; call gportstk(vp); if (i=j) then run gbxwhskr(data[,i], ht); else run gcontour(data[,j], data[,i]); /*-- onto the next viewport --*/ vp[,1] = vp[,1] + cellwid; call gportpop; end; vp=(xstart // xstart + width) || (vp[,2] - cellwid); end; call gshow; finish gscatmat; /*-- Placement of text is based on the character height. */ /* The IML modules defined here assume percent as the unit of */ /* character height for device independent control. */ goptions gunit=pct; use factory; vname={prod, temp, defect}; read all var vname into xyz; run gscatmat(xyz, vname[1:2]); /*-- 2 x 2 scatter plot matrix --*/ run gscatmat(xyz, vname); /*-- 3 x 3 scatter plot matrix --*/ quit; goptions gunit=cell; /*-- reset back to default --*/
Copyright © SAS Institute, Inc. All Rights Reserved.