
Golan, Judge, and Miller (1996) give the finite approximation to the asymptotic variance matrix of the moment formulation as:
![\[ \hat{Var}(\hat{\beta })=\Sigma _{z} X’X C^{-1} D C^{-1} X’X \Sigma _{z} \]](images/etsug_entropy0135.png)
where
![\[ C=X’X \Sigma _{z} X’X + \Sigma _{v} \]](images/etsug_entropy0136.png)
and
![\[ D=X’ \Sigma _{e} X \]](images/etsug_entropy0137.png)
Recall that in the moment formulation, V is the support of
, which implies that
is a k-dimensional variance matrix.
and
are both diagonal matrices with the form
![\[ \Sigma _{z}=\left[ \begin{array}{ccc} \sum _{l=1}^{L}z_{1l}^{2}p_{1l}-(\sum _{l=1}^{L}z_{1l}p_{1l})^{2} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \sum _{l=1}^{L}z_{Kl}^{2}p_{Kl}-(\sum _{l=1}^{L}z_{Kl}p_{Kl})^{2}\\ \end{array} \right] \]](images/etsug_entropy0141.png)
and
![\[ \Sigma _{v}=\left[ \begin{array}{ccc} \sum _{j=1}^{J}v_{1j}^{2}w_{jl}-(\sum _{j=1}^{J}v_{1j}w_{1j})^{2} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \sum _{j=1}^{J}v_{Kl}^{2}w_{Kl}-(\sum _{j=1}^{J}v_{Kl}w_{Kl})^{2}\\ \end{array} \right] \]](images/etsug_entropy0142.png)