The QLIM Procedure |
Cameron and Trivedi (1986) studied Australian Health Survey data. Variable definitions are given in Cameron and Trivedi (1998, p. 68).
The dependent variable, dvisits, has nine ordered values. The following SAS statements estimate the ordinal probit model:
/*-- Ordered Discrete Responses --*/ proc qlim data=docvisit; model dvisits = sex age agesq income levyplus freepoor freerepa illness actdays hscore chcond1 chcond2 / discrete; run;
The output of the QLIM procedure for ordered data modeling is shown in Output 21.1.1.
Discrete Response Profile of dvisits | ||
---|---|---|
Index | Value | Total Frequency |
1 | 0 | 4141 |
2 | 1 | 782 |
3 | 2 | 174 |
4 | 3 | 30 |
5 | 4 | 24 |
6 | 5 | 9 |
7 | 6 | 12 |
8 | 7 | 12 |
9 | 8 | 6 |
Model Fit Summary | |
---|---|
Number of Endogenous Variables | 1 |
Endogenous Variable | dvisits |
Number of Observations | 5190 |
Log Likelihood | -3138 |
Maximum Absolute Gradient | 0.0003675 |
Number of Iterations | 82 |
Optimization Method | Quasi-Newton |
AIC | 6316 |
Schwarz Criterion | 6447 |
Goodness-of-Fit Measures | ||
---|---|---|
Measure | Value | Formula |
Likelihood Ratio (R) | 789.73 | 2 * (LogL - LogL0) |
Upper Bound of R (U) | 7065.9 | - 2 * LogL0 |
Aldrich-Nelson | 0.1321 | R / (R+N) |
Cragg-Uhler 1 | 0.1412 | 1 - exp(-R/N) |
Cragg-Uhler 2 | 0.1898 | (1-exp(-R/N)) / (1-exp(-U/N)) |
Estrella | 0.149 | 1 - (1-R/U)^(U/N) |
Adjusted Estrella | 0.1416 | 1 - ((LogL-K)/LogL0)^(-2/N*LogL0) |
McFadden's LRI | 0.1118 | R / U |
Veall-Zimmermann | 0.2291 | (R * (U+N)) / (U * (R+N)) |
McKelvey-Zavoina | 0.2036 | |
N = # of observations, K = # of regressors |
Parameter Estimates | |||||
---|---|---|---|---|---|
Parameter | DF | Estimate | Standard Error | t Value | Approx Pr > |t| |
Intercept | 1 | -1.378705 | 0.147413 | -9.35 | <.0001 |
sex | 1 | 0.131885 | 0.043785 | 3.01 | 0.0026 |
age | 1 | -0.534190 | 0.815907 | -0.65 | 0.5126 |
agesq | 1 | 0.857308 | 0.898364 | 0.95 | 0.3399 |
income | 1 | -0.062211 | 0.068017 | -0.91 | 0.3604 |
levyplus | 1 | 0.137030 | 0.053262 | 2.57 | 0.0101 |
freepoor | 1 | -0.346045 | 0.129638 | -2.67 | 0.0076 |
freerepa | 1 | 0.178382 | 0.074348 | 2.40 | 0.0164 |
illness | 1 | 0.150485 | 0.015747 | 9.56 | <.0001 |
actdays | 1 | 0.100575 | 0.005850 | 17.19 | <.0001 |
hscore | 1 | 0.031862 | 0.009201 | 3.46 | 0.0005 |
chcond1 | 1 | 0.061601 | 0.049024 | 1.26 | 0.2089 |
chcond2 | 1 | 0.135321 | 0.067711 | 2.00 | 0.0457 |
_Limit2 | 1 | 0.938884 | 0.031219 | 30.07 | <.0001 |
_Limit3 | 1 | 1.514288 | 0.049329 | 30.70 | <.0001 |
_Limit4 | 1 | 1.711660 | 0.058151 | 29.43 | <.0001 |
_Limit5 | 1 | 1.952860 | 0.072014 | 27.12 | <.0001 |
_Limit6 | 1 | 2.087422 | 0.081655 | 25.56 | <.0001 |
_Limit7 | 1 | 2.333786 | 0.101760 | 22.93 | <.0001 |
_Limit8 | 1 | 2.789796 | 0.156189 | 17.86 | <.0001 |
By default, ordinal probit/logit models are estimated assuming that the first threshold or limit parameter () is 0. However, this parameter can also be estimated when the LIMIT1=VARYING option is specified. The probability that belongs to the th category is defined as
where is the logistic or standard normal CDF, and . Output 21.1.2 lists ordinal probit estimates computed in the following program. Note that the intercept term is suppressed for model identification when is estimated.
/*-- Ordered Probit --*/ proc qlim data=docvisit; model dvisits = sex age agesq income levyplus freepoor freerepa illness actdays hscore chcond1 chcond2 / discrete(d=normal) limit1=varying; run;
Parameter Estimates | |||||
---|---|---|---|---|---|
Parameter | DF | Estimate | Standard Error | t Value | Approx Pr > |t| |
sex | 1 | 0.131885 | 0.043785 | 3.01 | 0.0026 |
age | 1 | -0.534181 | 0.815915 | -0.65 | 0.5127 |
agesq | 1 | 0.857298 | 0.898371 | 0.95 | 0.3399 |
income | 1 | -0.062211 | 0.068017 | -0.91 | 0.3604 |
levyplus | 1 | 0.137031 | 0.053262 | 2.57 | 0.0101 |
freepoor | 1 | -0.346045 | 0.129638 | -2.67 | 0.0076 |
freerepa | 1 | 0.178382 | 0.074348 | 2.40 | 0.0164 |
illness | 1 | 0.150485 | 0.015747 | 9.56 | <.0001 |
actdays | 1 | 0.100575 | 0.005850 | 17.19 | <.0001 |
hscore | 1 | 0.031862 | 0.009201 | 3.46 | 0.0005 |
chcond1 | 1 | 0.061602 | 0.049024 | 1.26 | 0.2089 |
chcond2 | 1 | 0.135322 | 0.067711 | 2.00 | 0.0457 |
_Limit1 | 1 | 1.378706 | 0.147415 | 9.35 | <.0001 |
_Limit2 | 1 | 2.317590 | 0.150206 | 15.43 | <.0001 |
_Limit3 | 1 | 2.892994 | 0.155198 | 18.64 | <.0001 |
_Limit4 | 1 | 3.090367 | 0.158263 | 19.53 | <.0001 |
_Limit5 | 1 | 3.331566 | 0.164065 | 20.31 | <.0001 |
_Limit6 | 1 | 3.466128 | 0.168799 | 20.53 | <.0001 |
_Limit7 | 1 | 3.712493 | 0.179756 | 20.65 | <.0001 |
_Limit8 | 1 | 4.168502 | 0.215738 | 19.32 | <.0001 |
Copyright © SAS Institute, Inc. All Rights Reserved.