TS-140
RECORD LAYOUT OF A SAS® VERSION 5 OR 6 DATA SET IN SAS® TRANSPORT (XPORT) FORMAT

INTRODUCTION

All transport data set records are 80 bytes in length. If there is not sufficient
data to reach 80 bytes, then a record is padded with ASCII blanks to 80 bytes. All
character data are stored in ASCIIl, regardless of the operating system. All
integers are stored using IBM-style integer format, and all floating-point numbers
are stored using the IBM-style double (truncated if the variable"s length is less
than 8). [An exception to this is noted later.]

See the section "NUMERIC DATA FIELDS"™ for information on constructing IBM-style
doubles.

RECORD LAYOUT

1. The First header record consists of the following character string, in ASCII:

00000
2. The first real header record uses the following layout:
aaaaaaaabbbbbbbbcccccccecddddddddeeeeeeee FFFFFFFFFFFFFTFT

In this record:

-- aaaaaaaa and bbbbbbbb specify "SAS -

-— cccccccce specifies "SASLIB ".

-- dddddddd specifies the version of the SAS(r) System under which the file
was created.

-- eeeeeeee specifTies the operating system that creates the record.

-- FFFFFFFFFFFFFFfT specifies the date and time created, formatted as
ddMMMyy:hh:mm:ss. Note that only a 2-digit year appears. If any program
needs to read in this 2-digit year, be prepared to deal with dates iIn the
1900s or the 2000s.

Another way to consider this record is as a C structure:

struct REAL_HEADER {
char sas_symbol[2][8];
char saslib[8];
char sasver[8];
char sas os[8];
char blanks[24];
char sas_create[16];

}:
3. Second real header record
ddMMMyy :hh:zmm:ss
In this record, the string is the datetime modified. Most often, the datetime
created and datetime modified will always be the same. Pad with ASCII blanks to

80 bytes. Note that only a 2-digit year appears. If any program needs to read in
this 2-digit year, be prepared to deal with dates in the 1900s or the 2000s.

Page 1 of 21

4.

Member header records

Both of these records occur for every member in the transport file.

00000000

Note the 0140 that appears in the member header record above. This value
specifies the size of the variable descriptor (NAMESTR) record that is
described later in this document. On the VAX/VMS operating system, the
value will be 0136 instead of 0140. This means that the descriptor will be
only 136 bytes instead of 140.

Member header data
aaaaaaaabbbbbbbbcccccccecddddddddeeeeeeee FEFFFFFFFFFFFFTT
In this member header:

-— aaaaaaaa specifies "SAS ".

-— bbbbbbbb specifies the data set name

—-— cccccccc 1s SASDATA (if a SAS data set is being created)

-— dddddddd specifies the version of the SAS System under which the
file was created.

-— eeeeeeee specifies the operating system.

-— FFFFFFFFFFFFFFFT is the datetime created, formatted as in previous
headers.

Consider this C structure:

struct REAL_HEADER {
char sas_symbol[8];
char sas_dsname[8];
char sasdata[8];
char sasver[8];
char sas_osname[8];
char blanks[24];
char sas_create[16];

}:
The second header record is as follows:
ddMMMyy :hh:mm:ss aabbbbbbbb

In this record the datetime modified appears using the DATETIME16. format,
followed by blanks up to column 33, where aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaa corresponds to a blank-padded data set label and bbbbbbbb is
the blank-padded data set type. Note that data set labels can be up to 256
characters as of SAS 8, but only the first 40 characters are stored in the
second header record. Note also that only a 2-digit year appears in the
datetime modified value. If any program needs to read in this 2-digit
year, be prepared to deal with dates in the 1900s or the 2000s.

Page 2 of 21

6.

Consider the following C structure:

struct SECOND_HEADER {
char dtmod_day[2];
char dtmod_month[3];
char dtmod_year[2];
char dtmod_colonl[1];
char dtmod_hour[2];
char dtmod_colon2[1];
char dtmod_minute[2];
char dtmod_colon2[1];
char dtmod_second[2];

char padding[16];
char dslabel[40];
char dstype[8]

3
Namestr header record

One for each member.

0000000

In this header record, xxxx is the number of variables in the data set,
displayed with blank-padded numeric characters. For example, for 2
variables, xxxx=0002. xxxx occurs at offset 54 (base 0 as in C language

use).

Namestr records

Each namestr field is 140 bytes long, but the fields are streamed together
IT the last byte of the last namestr field

and broken in 80-byte pieces.
in the last byte of the 80-byte record, the record is padded

does not fall

with ASCII blanks to 80 bytes.

Here is the C structure definition for the namestr record:

struct NAMESTR {
short ntype;
short nhfun;
short nlng;
short nvarO;
char8 nname;

/*
/*
/*
/*
/*

char40 nlabel; /=
char8 nform; /=
short nfl; /*
short nfd; /*
short nfj; /*
char nfill[2]; /*

char8 niform;
short nifl;

/*
/*

short nifd; /*
long npos; /*
char rest[52]; /*
}:

VARIABLE TYPE: 1=NUMERIC, 2=CHAR
HASH OF NNAME (always 0)

LENGTH OF VARIABLE IN OBSERVATION
VARNUM

NAME OF VARIABLE

LABEL OF VARIABLE

NAME OF FORMAT

FORMAT FIELD LENGTH OR O

FORMAT NUMBER OF DECIMALS

O=LEFT JUSTIFICATION, 1=RIGHT JUST
(UNUSED, FOR ALIGNMENT AND FUTURE)
NAME OF INPUT FORMAT

INFORMAT LENGTH ATTRIBUTE

INFORMAT NUMBER OF DECIMALS
POSITION OF VALUE IN OBSERVATION
remaining fields are irrelevant

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Page 3 of 21

Note that the length given in the last 4 bytes of the member header record
indicates the actual number of bytes for the NAMESTR structure. The size
of the structure listed above is 140 bytes. Under VAX/VMS, the size will
be 136 bytes, meaning that the "rest" variable may be truncated.

Observation header

000000
Data records
Data records are streamed in the same way that namestrs are. There is

ASCII blank padding at the end of the last record if necessary. There is
no special trailing record.

MISSING VALUES

Missing values are written out with the First byte (the exponent) indicating
the proper missing values. All subsequent bytes are 0x00. The first byte is:

e oot
- X
. Ox2e
A 0x41
.B 0x42
Z o Ox5a

A SAMPLE SESSION TO SHOW A TRANSPORT DATA SET

This session was run on a ASCll-based system to demonstrate the creation and
record layout of a transport data set.

$ sas606
1? libname xxx sasvbxpt *"xxx.dat";

NOTE: Libref XXX was successfully assigned as follows:
Engine: XPORT
Physical Name: xxx.dat

8? data temp; input x y $ @@; cards;
9>1a2B. . .a*
10> run;

NOTE: SAS went to a new line when INPUT statement reached past the end of
a line.
NOTE: The data set WORK.TEMP has 4 observations and 2 variables.
NOTE: The DATA statement used 10 seconds.
NOTE: The DATA statement used 1 seconds cpu time.
11? data temp; set temp;
12? format x date7.; label y="character variable®; run;

NOTE: The data set WORK.TEMP has 4 observations and 2 variables.
NOTE: The DATA statement used 12 seconds.

Page 4 of 21

NOTE: The DATA statement used 2 seconds cpu time.
13? proc print data=temp; format x y ; run;

The SAS System 10:17 Thursday, April 13, 1989

2
OBS X Y
1 1 a
2 2 B
3 -
4 A *

NOTE: The PROCEDURE PRINT used 3 seconds.
NOTE: The PROCEDURE PRINT used 1 seconds cpu time.
14? proc print data=temp; run;

The SAS System 10:17 Thursday, April 13, 1989

3
0BS X Y
1 02JANGO a
2 03JANGO B
3 -
4 A *

NOTE: The PROCEDURE PRINT used 2 seconds.
NOTE: The PROCEDURE PRINT used less than 1 second cpu time.
15? proc contents; run;

The SAS System 10:17 Thursday, April 13, 1989

4
CONTENTS PROCEDURE
Data Set Name: WORK.TEMP Observations: 4
Member Type: DATA Variables: 2
Engine: V606 Indexes: 0
Created: 13APR89:10:19:15 Observation Length: 16
Last Modified: 13APR89:10:19:15 Deleted Observations: 0O
Data Set Type: Compressed: NO
Label:
----- Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

1 X Num 8 0 DATETY.

2 Y Char 8 8 character variable

————— Engine/Host Dependent Information-----
The SAS System 10:17 Thursday, April 13, 1989
5

Page 5 of 21

RULE:

NOTE:
NOTE:

CONTENTS PROCEDURE

Data Set Page Size: 4096
Number of Data Set Pages: 1

First Data Page: 1

Max Obs per Page: 145

Obs in First Data Page: 4
FILETYPE: REGULAR

The PROCEDURE CONTENTS used 7 seconds.
The PROCEDURE CONTENTS used 2 seconds cpu time.

16? data xxx.abc; set; run;

NOTE:
NOTE:
NOTE:

The data set XXX.ABC has 4 observations and 2 variables.
The DATA statement used 2 seconds.
The DATA statement used 1 seconds cpu time.

20? options 1s=132;
21? data _null_; infile "xxx.dat" recfm=F lrecl=80; input X

o~NOOOWNE

CHAR
ZONE
NUMR
CHAR
ZONE
NUMR
CHAR
ZONE
NUMR
CHAR
ZONE
NUMR
13

CHAR
ZONE
NUMR

$char80. ;list;run;

———1——t-2 43—t 5 4 ot T8+

HEADER RECORD*******| |BRARY HEADER RECORD!!!I1111000000000000000000000000000000
SAS SAS SASLIB 6.06 bsd4.2 13APR89:10:20:06
13APR89:10:20:06

HEADER RECORD*******MEMBER HEADER RECORD!!!1111000000000000000001600000000140
HEADER RECORD*******DSCRPTR HEADER RECORD!!!I1111000000000000000000000000000000
SAS ABC SASDATA 6.06 bsd4.2 13APR89:10:20:06
13APR89:10:20:06

HEADER RECORD*******NAMESTR HEADER RECORD!!!I1111000000000200000000000000000000
........ X DATE -

000000005222445422220000000022222222
010008018000414500000700000000000000
.. Y char
00522222226667
0002000802900000003812
acter variable e e
66767276766666222222222222222222222222222222000000002222222200000000000000000000
134520612912C50008000000000000

0022
00
HEADER RECORD*******(QBS HEADER RECORD!I!III11000000000000000000000000000000

*

41000000622222224200000042222222200000002222222240000000222222222222222222222222
10000000100000001000000020000000EO00000000000000010000000A00000000000000000000000

NOTE: The infile "xxx.dat" is:

FI1LENAME=//HOBBITT/UDR/LANGSTON/COM/XXX.DAT

NOTE: 14 records were read from the infile "xxx.dat".
NOTE: The DATA statement used 4 seconds.
NOTE: The DATA statement used less than 1 second cpu time.

227? endsas;

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000

NOTE: The infile "xxx.dat" is:
FI1LENAME=//HOBBITT/UDR/LANGSTON/COM/XXX .DAT

Page 6 of 21

NOTE: 14 records were read from the infile "xxx.dat".
NOTE: The DATA statement used 4 seconds.

NOTE: The DATA statement used less than 1 second cpu time.
22? endsas;

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000

In case you"re not familiar with the LIST output from the DATA step, here's
a brief explanation:

IT the record has any unprintable characters, LIST output generates three
lines of output:

1) the record itself, printing everything that"s printable and using dots
for everything else

2) the upper nibble of each byte in hex

3) the lower nibble of each byte in hex.

Consider, then, record 9, which has some printable and unprintable
characters:

CHAR X DATE
ZONE 000000005222445422220000000022222222
NUMR 010008018000414500000700000000000000

The first 8 bytes are unprintable, since dots appear. Those first 8 bytes,
reading in sequential hex format, would be 00010000 00080001. The next 56
bytes are printable. Then, we have 00070000 00000000. The remaining 8 bytes
are ASCI1 blanks.

NUMERIC DATA FIELDS

All numeric data fields in the transport file are stored as floating-point
numbers.

All floating-point numbers in the file are stored using the IBM mainframe

representation. If your application is to read from or write to transport

files, it will be necessary to convert native floating-point numbers to or
from the transport representation.

Most platforms use the IEEE representation for floating-point numbers. Some
of these platforms store the floating-point numbers in reversed byte order
from other platforms. For the sake of nomenclature, we will call these
platforms "big endian' and "little endian" platforms.

A big-endian environment stores integers with the lowest-significant byte at
a higher address in memory. Likewise, an IEEE platform is big endian if the
first byte of the exponent is stored in a lower address than the first byte
of the mantissa. For example, the HP series machines store a floating-point 1
as 3F FO 00 00 00 00 00 00 (the bytes in hex), while an IBM PC stores a 1 as
00 00 00 00 00 00 FO 3F. The bytes are the same, just reversed. Therefore,
the HP is considered big endian and the PC is considered little endian.

This is a partial list of the categories of machines on which the SAS System
runs:

Page 7 of 21

Operating

Hardware Systems Float Type Endian
IBM mainframe MVS,CMS,VSE 1BM big
DEC Alpha AXP/VMS,DEC UNIX 1EEE little
HP HP-UX IEEE big
Sun Solaris 1,11 IEEE big
RS/6000 AlIX IEEE big
IBM PC Windows,0S/2,1ABI 1EEE little

Not included is VAX, which uses a different floating-point representation
than either IBM mainframe or IEEE.

PROVIDED SUBROUTINES

To assist you in reading and/or writing transport files, we are providing
routines to convert from IEEE representation (either big endian or little
endian) to transport representation and back again. The source code for these
routines is provided at the end of this document. Note that the source code
is provided as is, and as a convenience to those needing to read and/or write
transport files. The source code has been tested on HP-UX, DEC UNIX, 1BM PC,
and MVS.

The routine to use is cnxptiee. This routine will convert in either
direction, either to or from transport. Its usage is as follows:

/* ___ */
/* rc = cnxptiee(from,fromtype, to,totype); */
/* */
/* where */
/* */
/* from pointer to a floating point value */
/* fromtype type of floating point value (see below) */
/* to pointer to target area */
/* totype type of target value (see below) */
/* */
/* Floating point types: */
/* 0 native floating point */
/* 1 IBM mainframe (transport representation) */
/* 2 Big endian IEEE floating point */
/* 3 Little endian IEEE floating point */
/* */
/* rc = cnxptiee(from,0,to,1); native -> transport */
/* rc = cnxptiee(from,0,to0,2); native -> Big endian IEEE */
/* rc = cnxptiee(from,0,to0,3); native -> Little endian IEEE */
/* rc = cnxptiee(from,1,to0,0); transport -> native */
/* rc = cnxptiee(from,1,to0,2); transport -> Big endian IEEE */
/* rc = cnxptiee(from,1,to0,3); transport -> Little endian IEEE */
/* rc = cnxptiee(from,2,to0,0); Big endian IEEE -> native */
/* rc = cnxptiee(from,2,to,1); Big endian IEEE -> transport */
/* rc = cnxptiee(from,2,t0,3); Big endian IEEE -> Little endian IEEE */
/* rc = cnxptiee(from,3,to0,0); Little endian IEEE -> native */
/* rc = cnxptiee(from,3,to,1); Little endian 1EEE -> transport */
/* rc = cnxptiee(from,3,t0,2); Little endian 1EEE -> Big endian IEEE */
/* ___ */

Page 8 of 21

The "native" representation is whatever is appropriate for the host machine.
Most likely you will be using that mode.

The testieee.c routine is supplied here to demonstrate how the cnxptiee is
used. It is also useful to ensure that the cnxptiee routine works in your
environment.

Note that there are several symbols that can be defined when compiling the
ieee.c Tile.These symbols are FLOATREP, BIG_ENDIAN, and LITTLE_ENDIAN.

FLOATREP should be set to one of the following strings:

-— CN_TYPE_IEEEB Big endian IEEE
-— CN_TYPE_IEEEL Little endian IEEE
-— CN_TYPE_XPORT Transport format (for example, IBM)

IT BIG_ENDIAN is defined, it is assumed that the platform is big endian. If
LITTLE_ENDIAN is defined, it is assumed that the platform is little endian.
Do not define both of them.

IT FLOATREP is not defined, the proper value is determined at run time.
Although this works, it incurs additional overhead that can increase CPU time
with large files. Use the FLOATREP symbol to improve efficiency. Likewise, if
neither BIG_ENDIAN nor LITTLE_ENDIAN is defined, the proper orientation is
determined at run time. It is much more efficient to supply the proper
definition at compile time.

As an example, consider this command on HP-UX:

cc testieee.c ieee.c -DFLOATREP=CN_TYPE_IEEEB -DBIG_ENDIAN
Also consider the corresponding command on DEC UNIX:

cc testieee.c ieee.c -DFLOATREP=CN_TYPE_ IEEEL -DLITTLE_ENDIAN
Here is the correct output from the testieee run:

Native -> Big endian IEEE match count = 4 (should be 4).

Native -> Little endian IEEE match count = 4 (should be 4).

Native -> Transport match count = 4 (should be 4).

Transport -> Big endian IEEE match count = 4 (should be 4).
Transport -> Little endian IEEE match count = 4 (should be 4).
Transport -> Native match count = 4 (should be 4).

Big endian IEEE -> Little endian IEEE match count = 4 (should be 4).
Big endian IEEE -> Transport match count = 4 (should be 4).

Big endian IEEE -> Native match count = 4 (should be 4).

Little endian IEEE -> Big endian IEEE match count = 4 (should be 4).
Little endian IEEE -> Transport match count = 4 (should be 4).
Little endian IEEE -> Native match count = 4 (should be 4).

Here is the source code for the test program, testieee.c

#define CN_TYPE_NATIVE O

#define CN_TYPE_XPORT 1
#define CN_TYPE_IEEEB 2

Page 9 of 21

#define CN_TYPE_IEEEL 3

void tohex();

#define N_TESTVALS 4

static char xpt_testvals[N_TESTVALS][8] = {
{0x41,0x10,0x00,0x00,0x00,0x00,0x00,0x00}, /7* 1 */
{Oxc1,0x10,0x00,0x00,0x00,0x00,0x00,0x00}, /* -1 */
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, /7* O */
{0x41,0x20,0x00,0x00,0x00,0x00,0x00,0x00} /* 2 */

¥

static char ieeeb_testvals[N_TESTVALS][8] = {
{0x3f,0xf0,0x00,0x00,0x00,0x00,0x00,0x00}, /7* 1 */
{0xbf,0xf0,0x00,0x00,0x00,0x00,0x00,0x00}, /* -1 */
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, /7* 0 */
{0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00} /* 2 */

3

static char ieeel_testvals[N_TESTVALS][8] = {
{0x00,0x00,0x00,0x00,0x00,0x00,0xf0,0x3F}, /7* 1 */
{0x00,0x00,0x00,0x00,0x00,0x00,0xf0,0xbf}, /7* -1 */
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, /7* O */
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x40} /* 2 */

};

static double native[N_TESTVALS] =
{11_11012};

#define N_MISSINGVALS 3
static char missingvals[N_MISSINGVALS][8] = {
{0x2e,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, /* std missing */
{0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, /* A */
{0x5A,0x00,0x00,0x00,0x00,0x00,0x00,0x00} /* .Z */

¥

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

main()

rc
rc
rc
rc
rc
rc
rc
rc
rc
rc
rc
rc

cnxptiee(from,0,to0,1);
cnxptiee(from,0,t0,2);
cnxptiee(from,0,t0,3);
cnxptiee(from,1,t0,0);
cnxptiee(from,1,t0,2);
cnxptiee(from,1,to0,3);
cnxptiee(from,2,to0,0);
cnxptiee(from,2,to0,1);
cnxptiee(from,2,t0,3);
cnxptiee(from,3,t0,0);
cnxptiee(from,3,to0,1);
cnxptiee(from,3,t0,2);

char to[8];
int i,matched;
char hexdigits[17];

for (i=matched=0;i<N_TESTVALS;i++) {

native -> transport
native -> Big endia
native -> Little en
transport -> native
transport -> Big en
transport -> Little
Big endian IEEE ->
Big endian IEEE ->
Big endian IEEE ->
Little endian IEEE
Little endian IEEE
Little endian IEEE

*/

n IEEE */
dian IEEE */
*/

dian IEEE */
endian 1EEE */

native */
transport */
Little endian IEEE */
-> native */
-> transport */

-> Big endian IEEE */

Page 10 of 21

cnxptiee(&native[i],CN_TYPE NATIVE,to,CN_TYPE IEEEB);

matched += (memcmp(to,ieeeb testvals[i],8) == 0);

}

printf("'Native -> Big endian 1EEE match count = %d (should be %d).-\n",
matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(&native[i],CN_TYPE_NATIVE,to,CN_TYPE_IEEEL);
matched += (memcmp(to,ieeel_testvals[i],8) == 0);
}
printF("'Native -> Little endian IEEE match count = %d (should be %d).\n",
matched,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(&native[i],CN_TYPE_NATIVE,to,CN_TYPE_XPORT);
matched += (memcmp(to,xpt testvals[i],8) == 0);
}
printf("'Native -> Transport match count = %d (should be %d).\n",
matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(xpt_testvals[i],CN_TYPE_XPORT,to,CN_TYPE_IEEEB);
matched += (memcmp(to,ieeeb_testvals[i],8) == 0);
}
printf(""Transport -> Big endian 1EEE match count = %d (should be %d).\n",
matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(xpt_testvals[i],CN_TYPE XPORT,to,CN_TYPE_IEEEL);
matched += (memcmp(to,ieeel testvals[i],8) == 0);

printf("'Transport -> Little endian IEEE match count = %d \
(should be %d).\n",
matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(xpt_testvals[i],CN_TYPE_XPORT,to,CN_TYPE_NATIVE);
matched += (memcmp(to,&nativel[i],8) == 0);
}
printf(""Transport -> Native match count = %d (should be %d).-\n",
matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(ieeeb_testvals[i],CN_TYPE IEEEB,to,CN_TYPE IEEEL);
matched += (memcmp(to,ieeel testvals[i],8) == 0);

}

printf("'Big endian IEEE -> Little endian IEEE match count = %d \
(should be %d).\n",

matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(ieeeb_testvals[i],CN_TYPE IEEEB,to,CN_TYPE XPORT);
matched += (memcmp(to,xpt _testvals[i],8) == 0);

}
printf("’'Big endian IEEE -> Transport match count = %d (should be %d).\n",
matched ,N_TESTVALS);

Page 11 of 21

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(ieeeb_testvals[i],CN_TYPE_IEEEB,to,CN_TYPE NATIVE);
matched += (memcmp(to,&nativel[i],8) == 0);

}
printf("'Big endian IEEE -> Native match count = %d (should be %d).\n",
matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(ieeel_testvals[i],CN_TYPE_IEEEL,to,CN_TYPE_IEEEB);
matched += (memcmp(to,ieeeb testvals[i],8) == 0);
}
printf(’'Little endian IEEE -> Big endian IEEE match count = %d \
(should be %d)-\n",
matched ,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(ieeel_testvals[i],CN_TYPE_IEEEL,to,CN_TYPE_XPORT);
matched += (memcmp(to,xpt_testvals[i],8) == 0);

}
printf('Little endian IEEE -> Transport match count = %d (should be %d).\n",
matched,N_TESTVALS);

for (i=matched=0;i<N_TESTVALS;i++) {
cnxptiee(ieeel_testvals[i],CN_TYPE_IEEEL,to,CN_TYPE_NATIVE);
matched += (memcmp(to,&native[i],8) == 0);

printf("’'Little endian IEEE -> Native match count = %d (should be
%d) -\n"",
matched ,N_TESTVALS);

}

void tohex(bytes,hexchars, length)
unsigned char *bytes;
char *hexchars;
int length;
{
static char *hexdigits = "0123456789ABCDEF";
int i;
for (i=0;i<length;i++) {
*hexchars++ = hexdigits[*bytes >> 4];
*hexchars++ = hexdigits[*bytes++ & O0x0f];
}

*hexchars = 0;

#define CN_TYPE_NATIVE 0
#define CN_TYPE_XPORT 1
#define CN_TYPE_IEEEB 2
#define CN_TYPE_IEEEL 3

int cnxptiee();
void xpt2ieee();
void i1eee2xpt();

#ifndef FLOATREP

Page 12 of 21

#define FLOATREP get native()
int get native();

#endif
/* ___ */
/* rc = cnxptiee(from,fromtype,to,totype); */
/* */
/* where */
/* */
/* from pointer to a floating point value */
/* fromtype type of floating point value (see below) */
/* to pointer to target area */
/* totype type of target value (see below) */
/* */
/* Floating point types: */
/* 0 native floating point */
/* 1 IBM mainframe (transport representation) */
/* 2 Big endian IEEE floating point */
/* 3 Little endian IEEE floating point */
/* */
/* rc = cnxptiee(from,0,to,1); native -> transport */
/* rc = cnxptiee(from,0,to0,2); native -> Big endian IEEE */
/* rc = cnxptiee(from,0,to0,3); native -> Little endian IEEE */
/* rc = cnxptiee(from,1,to0,0); transport -> native */
/* rc = cnxptiee(from,1,to0,2); transport -> Big endian IEEE */
/* rc = cnxptiee(from,1,to0,3); transport -> Little endian IEEE */
/* rc = cnxptiee(from,2,to0,0); Big endian IEEE -> native */
/* rc = cnxptiee(from,2,to,1); Big endian IEEE -> transport */
/* rc = cnxptiee(from,2,to0,3); Big endian IEEE -> Little endian IEEE */
/* rc = cnxptiee(from,3,to0,0); Little endian IEEE -> native */
/* rc = cnxptiee(from,3,to,1); Little endian 1EEE -> transport */
/* rc = cnxptiee(from,3,to0,2); Little endian IEEE -> Big endian I1EEE */
/* ___ */

int cnxptiee(from, fromtype,to,totype)
char *from;
int fromtype;
char *to;
int totype;

{
char temp[8];

int 1;
if (fromtype == CN_TYPE_NATIVE) {
fromtype = FLOATREP;

}

switch(fromtype) {

case CN_TYPE_IEEEL :

iT (totype CN_TYPE_IEEEL)
break;

for (i=7;1>=0;i--) {
temp[7-1] = from[i];

3
from = temp;
fromtype = CN_TYPE_IEEEB;

/* break intentionally omitted */
case CN_TYPE_IEEEB :

Page 13 of 21

/* break intentionally omitted */
case CN_TYPE_XPORT :

break;

default:

return(-1);

}

if (totype == CN_TYPE_NATIVE) {
totype = FLOATREP;

switch(totype) {

case CN_TYPE_XPORT :
case CN_TYPE_IEEEB :
case CN_TYPE_IEEEL :
break;

default:

return(-2);

}

if (fromtype == totype) {
memcpy(to,from,8);
return(0);

}

switch(fromtype) {
case CN_TYPE_IEEEB :

if (totype == CN_TYPE_XPORT)
ieee2xpt(from,to);

else memcpy(to,from,8);
break;

case CN_TYPE_XPORT :
xpt2ieee(from,to);
break;

}

if (totype == CN_TYPE_IEEEL) {
memcpy (temp,to,8);

for (i=7;i>=0;i--) {

to[7-1] = temp[i];

}

}
return(0);

int get_native({

static char float reps[][8] = {
{0x41,0x10,0x00,0x00,0x00,0x00,0x00,0x00}%},
{0x3f,0x¥f0,0x00,0x00,0x00,0x00,0x00,0x00}%},
{0x00,0x00,0x00,0x00,0x00,0x00,0xf0,0x3F}

¥
static double one = 1.00;

int i,j;
J = sizeof(Float _reps)/8;
for (i=0;i<j;i++) {
if (memcmp(&one,float_reps+i,8) == 0)
return(i+1);

return(-1);

Page 14 of 21

}

#ifdef BIG_ENDIAN
#define REVERSE(a,b)
#endif

#ifdef LITTLE_ENDIAN
#define DEFINE_REVERSE
void REVERSE(Q);

#endif

#1T ldefined(DEFINE_REVERSE) && !defined(REVERSE)
#define DEFINE_REVERSE
void REVERSE(Q);
#endif

void xpt2ieee(xport,ieee)

unsigned char *xport;
unsigned char *ieee;

char temp[8];

register int shift;
register int nib;

unsigned long ieeel,ieee?;
unsigned long xportl = 0;
unsigned long xport2 = 0;

memcpy (temp,xport,8);
memset(ieee,0,8);

if (*temp && memcmp(temp+l,ieee,7) == 0) {
iecee[0] = ieee[l] = OxFF;
ieee[2] = ~(*temp);
return;

}

memcpy(((char *)&xportl)+sizeof(unsigned long)-4,temp,4);
REVERSE (&xportl,sizeof(unsigned long));
memcpy (((char *)&xport2)+sizeof(unsigned long)-4,temp+4,4);
REVERSE (&xport2,sizeof(unsigned long));

/***/

/* Translate IBM format floating point numbers into IEEE */
/* format Ffloating point numbers. */
/* */
/* IEEE format: */
/* */
/650 */
/310 */
/* */
/* SEEEEEEEEEEEMMMM .. ._......... MMMM */
/* */

/* Sign bit, 11 bits exponent, 52 bit fraction. Exponent is */
/* excess 1023. The fraction is multiplied by a power of 2 of */

Page 15 of 21

/* the actual exponent. Normalized floating point numbers are */
/* represented with the binary point immediately to the left */

/* of the fraction with an implied "1" to the left of the */
/* binary point. */
/* */
/* IBM format: */
/* */
/650 */
/310 */
/* */
/* SEEEEEEEMMMM _.._....... MMMM */
/* */
/* Sign bit, 7 bit exponent, 56 bit fraction. Exponent is */

/* excess 64. The fraction is multiplied bya power of 16 of */
/* the actual exponent. Normalized floating point numbers are */
/* represented with the radix point immediately to the left of*/

/* the high order hex fraction digit. */
/* */
/* How do you translate from IBM format to IEEE? */
/* */
/* Translating back to ieee format from ibm is easier than */

/* going the other way. You lose at most, 3 bits of fraction, */
/* but nothing can be done about that. The only tricky parts */
/* are setting up the correct binary exponent from the ibm */
/* hex exponent, and removing the implicit "1" bit of the ieee*/
/* fraction (see vzctdbl). We must shift down the high order */

/* nibble of the ibm fraction until it is 1. This is the */
/* implicit 1. The bit is then cleared and the exponent */
/* adjusted by the number of positions shifted. A more */
/* thorough discussion is in vzctdbl.c. */

/* Get the first half of the ibm number without the exponent */
/* into the ieee number */
ieeel = xportl & OXOOFFFFff;

/* get the second half of the ibm number into the second half */

/* of the ieee number . IT both halves were 0. then just */
/* return since the ieee number is zero. */
ifT ((1(ieee2 = xport2)) && !xportl)
return;

/* The fraction bit to the left of the binary point in the */
/* ieee format was set and the number was shifted 0, 1, 2, or */
/* 3 places. This will tell us how to adjust the ibm exponent */
/* to be a power of 2 ieee exponent and how to shift the */
/* fraction bits to restore the correct magnitude. */

ifT ((nib = (int)xportl) & 0x00800000)

shift = 3;

else

it (nib & 0x00400000)
shift = 2;

else

iT (nib & 0x00200000)
shift = 1;

else

Page 16 of 21

shift = 0;

it (shift)
{
/* shift the ieee number down the correct number of places */
/* then set the second half of the ieee number to be the */
/* second half of the ibm number shifted appropriately, */
/* ored with the bits from the first half that would have */
/* been shifted in if we could shift a double. All we are */
/* worried about are the low order 3 bits of the Ffirst */
/* half since we"re only shifting by 1, 2, or 3. */

ieeel >>= shift;
ieee2 = (xport2 >> shift) |
((xportl & 0x00000007) << (29 + (3 - shift)));

}
/* clear the 1 bit to the left of the binary point */
ieeel &= OxFfFefffff;
/* set the exponent of the ieee number to be the actual */
/* exponent plus the shift count + 1023. Or this into the */
/* Tirst half of the ieee number. The ibm exponent is excess */
/* 64 but is adjusted by 65 since during conversion to ibm */
/* format the exponent is incremented by 1 and the fraction */
/* bits left 4 positions to the right of the radix point. */
ieeel |=

(((((long) (*temp & Ox7F) - 65) << 2) + shift + 1023) << 20) |
(xportl & 0x80000000) ;

REVERSE(&ieeel,sizeof(unsigned long));
memcpy(ieee, ((char *)&ieeel)+sizeof(unsigned long)-4,4);
REVERSE(&ieee2,sizeof(unsigned long));
memcpy(ieee+4, ((char *)&ieee2)+sizeof(unsigned long)-4,4);

return;
}
/* ___ */
/* Name: ieee2xpt */
/* Purpose: converts IEEE to transport */
/* Usage: rc = ieee2xpt(to_ieee,p data); */
/* Notes: this routine is an adaptation of the wzctdbl routine */
/* from the Apollo. */
/* ___ */

void ieee2xpt(ieee,xport)

unsigned char *ieee; /* ptr to IEEE Ffield (2-8 bytes) */
unsigned char *xport; /* ptr to xport format (8 bytes) */

{

register int shift;
unsigned char misschar;
int ieee_exp;
unsigned long xportl,xport2;
unsigned long ieeel 0;
unsigned long ieee2 0;

Page 17 of 21

char

icee8[8];

memcpy(ieee8, ieee,8);

————— get 2 longs for shifting----——————-——————————

memcpy(((char *)&ieeel)+sizeof(unsigned long)-4,ieee8,4);
REVERSE(&ieeel,sizeof(unsigned long));

memcpy(((char *)&ieee2)+sizeof(unsigned long)-4,ieee8+4,4);
REVERSE(&ieee2,sizeof(unsigned long));

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

memset(xport,0,8);
/*-————1F IEEE value is missing (1st 2 bytes are FFFF)----- */
if (*ieee8 == (char)Oxff && ieee8[1] == (char)Oxff) {

misschar = ~ieee8[2];

*xport = (misschar == 0xD2) ? 0x6D : misschar;

return;

}
/**/
/* Translate IEEE floating point number into IBM format float
/ *

/* 1EEE format:

/*

/650

/310

/ *

/* SEEEEEEEEEEEMMMM MMMM

/*

/* Sign bit, 11 bit exponent, 52 fraction. Exponent iIs excess
/* 1023. The fraction is multiplied by a power of 2 of the
/* actual exponent. Normalized floating point numbers are

/* represented with the binary point immediately to the left
/* of the fraction with an implied "1" to the left of the

/* binary point.

/ *

/* 1BM format:

/*

/650

/* 350

/ *

/* SEEEEEEEMMMM _.._.._.... MMMM

/*

/* Sign bit, 7 bit exponent, 56 bit fraction. Exponent is

/* excess 64. The fraction is multiplied by a power of 16 of
/* of the actual exponent. Normalized floating point numbers
/* are presented with the radix point immediately to the left
/* of the high order hex fraction digit.

/*

/* How do you translate from local to I1BM format?

/ *

/* The ieee format gives you a number that has a power of 2
/* exponent and a fraction of the form "1.<fraction bits>".
/* The first step is to get that "1" bit back into the

/* fraction. Right shift it down 1 position, set the high

/* order bit and reduce the binary exponent by 1. Now we have

Page

*/

18 of 21

/* a fraction that looks like ".l<fraction bits>" and it"s */
/* ready to be shoved into ibm format. The ibm fraction has 4 */
/* more bits than the ieee, the i1eee fraction must therefore */
/* be shifted left 4 positions before moving it in. We must */
/* also correct the fraction bits to account for the loss of 2*/
/* bits when converting from a binary exponent to a hex one */
/* (>> 2). We must shift the fraction left for 0, 1, 2, or 3 */

/* positions to maintain the proper magnitude. Doing */
/* conversion this way would tend to lose bits in the fraction*/
/* which is not desirable or necessary if we cheat a bit. */
/* First of all, we know that we are going to have to shift */
/* the i1eee fraction left 4 places to put it in the right */

/* position; we won"t do that, we"ll just leave it where it is*/
/* and increment the ibm exponent by one, this will have the */
/* same effect and we won"t have to do any shifting. Now, */
/* since we have 4 bits in front of the fraction to work with,*/
/* we won"t lose any bits. We set the bit to the left of the */
/* fraction which is the implicit "1" in the ieee fraction. We*/
/* then adjust the fraction to account for the loss of bits */
/* when going to a hex exponent. This adjustment will never */
/* involve shifting by more than 3 positions so no bits are */
/* lost. */

/* Get ieee number less the exponent into the first half of */
/* the ibm number */

xportl = ieeel & OXOOOFFFff;

/* get the second half of the number into the second half of */
/* the ibm number and see if both halves are 0. If so, ibm is */
/* also 0 and we just return */

ifT ((I(xport2 =
ieee_exp = 0;
goto doret;

}

/* get the actual exponent value out of the ieee number. The */
/* ibm fraction is a power of 16 and the ieee fraction a power*/
/* of 2 (16 ** n == 2 ** 4n). Save the low order 2 bits since */
/* they will get lost when we divide the exponent by 4 (right */
/* shift by 2) and we will have to shift the fraction by the */
/* appropriate number of bits to keep the proper magnitude. */

ieee2)) && lieeel) {

shift = (int)
(ieee_exp = (int)(((ieeel >> 16) & Ox7FFf0) >> 4) - 1023)
& 3;

/* the ieee format has an implied "1" immdeiately to the left */
/* of the binary point. Show it in here. */

Xportl |= 0x00100000;

if (shift)

{
/* set the first half of the ibm number by shifting it left */

Page 19 of 21

/* the appropriate number of bits and oring in the bits */
/* from the lower half that would have been shifted in (if */

/* we could shift a double). The shift count can never */
/* exceed 3, so all we care about are the high order 3 */
/* bits. We don"t want sign extention so make sure it"s an */
/* unsigned char. We"ll shift either5, 6, or 7 places to */

/* keep 3, 2, or 1 bits. After that, shift the second half */
/* of the number the right number of places. We always get */
/* zero fill on left shifts. */

xportl = (xportl << shift) |

((unsigned char) (((ieee2 >> 24) & OxE0) >>

(G + B - shifD))));

xport2 <<= shift;

}
/* Now set the ibm exponent and the sign of the fraction. The */
/* power of 2 ieee exponent must be divided by 4 and made */
/* excess 64 (we add 65 here because of the poisition of the */
/* fraction bits, essentially 4 positions lower than they */
/* should be so we incrment the ibm exponent). */
xportl |=

(((ieee_exp >>2) + 65) | ((ieeel >> 24) & 0x80)) << 24;

/* 1T the ieee exponent is greater than 248 or less than -260, */
/* then it cannot Fit in the ibm exponent field. Send back the */
/* appropriate flag. */

doret:
iT (-260 <= ieee_exp && ieee _exp <= 248) {
REVERSE (&xportl,sizeof(unsigned long));
memcpy (xport, ((char *)&xportl)+sizeof(unsigned long)-4,4);
REVERSE (&xport2,sizeof(unsigned long));
memcpy (xport+4,((char *)&xport2)+sizeof(unsigned long)-4,4);
return;

memset(xport,OxFF,8);

it (ieee_exp > 248)
*xport = Ox7F;
return;

}

#ifdef DEFINE_REVERSE
void REVERSE(intp,)
char *intp;
int I;

i .

int i,j;

char save;

static int one = 1;

#if 1defined(BIG_ENDIAN) && 'defined(LITTLE_ENDIAN)
if (((unsigned char *)&one)[sizeof(one)-1] == 1)

Page 20 of 21

return;
#endif

J = 1/2;
for (i=0;i<j;i++) {
save = intp[i];
intp[i] = intp[l-i1-1];
intp[l-i-1] = save;

b
#endi

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Page 21 of 21

