
1

SAS® Grid Manager – Testing and Benchmarking Best P ractices for
SAS Intelligence Platform

INTRODUCTION
Grid computing offers optimization of applications that analyze enormous amounts of data as well as load balancing
and management of multiple applications by providing an environment of shared and dynamically allocated
resources. Grid computing delivers value in a highly efficient manner for SAS analytics, data integration (ETL), data
mining, and business intelligence. However, the success of a grid depends on the nodes in the grid spending more
time computing than they spend communicating. This paper will address some best practices for how to approach
testing and benchmarking I/O performance with SAS in a grid.

While this paper focuses on the SAS Intelligence Platform and executing user-written SAS programs in a grid,
several other SAS solutions benefit from grid execution such as SAS Data Integration Studio and SAS Enterprise
Miner. These solutions offer point-and-click interfaces to enable you to develop complex SAS workflows that can
automatically execute in a grid environment without any end-user programming. Performance testing and tuning
specific to those products is beyond the scope of this paper. However, the information in this paper is applicable to
running other SAS products and solutions in a grid.

SAS AND DATA
When running SAS in a grid environment it is a best practice to have a shared data infrastructure that allows
each node in the grid access to storage. SAS applications and solutions typically process enormous amounts of
data and the SAS I/O pattern is very sequential. The read and write percentage will vary greatly depending on the
SAS application. For example, queries would be mostly reads, Data Integration and ETL tasks would be typically
half reads and half writes. It is nearly impossible to predict read write percentages in a typical SAS environment with
multiple types of SAS applications. A mixed workload environment would likely be in the range of 60% read and
40% writes.

There are three types of data that are critical to successful execution of SAS in a grid:

• Input data
• Temporary data
• Output data
• Cached data

Input Data Considerations
Each of the fundamental tasks distributed across the grid must have access to all required input data regardless of
where the tasks are executed. Sometimes the input data may be small (on the order of 100s of MB’s) and other
times the data may be large (multiple GB’s). In order to achieve the highest efficiency, the compute nodes should
spend the majority of their time computing rather than communicating. Compute tasks that require substantial data
movement require adequate bandwidth to the data. In this case, the data can either be distributed to the nodes
prior to running the application or much more commonly, stored on a file server accessible across the network via a
shared file system implementation combined with a typical SAN environment. It is important to consider the amount
of data being shared across the network. If the size of the shared files is in the gigabyte range then you need to
ensure that you have adequate bandwidth between your grid nodes and file system to maintain the necessary I/O
throughput. If the input data is generated by the application and not shared or needed later then there is nothing to
worry about. Data can be kept local to the server / grid node where execution occurs.

SASWORK Considerations
SAS does temporary file I/O in the SAS WORK directory, which is a disk directory configurable as a SAS option.
SAS I/O activity in SAS WORK can be quite substantial both in terms of intensity and disk space, depending on the
SAS job. As you plan your grid you need to evaluate SAS WORK usage by your application and ensure that you
have adequate SAS WORK space allocated for each grid node. In some SAS environments SAS WORK may be
set to a network location instead of local storage. Cost vs. performance needs to be analyzed in order to determine
whether to put SAS WORK on a network device or on local storage.

Output Data Considerations
You also need to consider the amount of data that is output by the application and ensure either that adequate
space is allocated in a shared location such that each of the grid nodes can write their output to the shared space or
ensure that each of the grid nodes has adequate space to write their respective output to their local file system. It is

2

recommended to write all output to a shared space if possible so that it is available to all nodes for subsequent
execution. You can also write SPDS tables back to a shared storage and then snap the partial tables together in
SPDS to create one large final table.

File Caching
File cache can play an important role in SAS application performance. However, because of process and application
contention for the limited amount of file cache in a single operating system instance performance can suffer. In a
grid environment less contention and more resources (i.e. RAM and CPU) can alleviate this problem and at a
potentially reduced hardware cost.

VALIDATION OF GRID INFRASTRUCTURE
When setting up a grid environment for testing and benchmarking it is a best practice to configure a s mall
subset, in the range of 5-10 nodes, of your grid wi th the same network infrastructure as the planned
production environment for the most meaningful resu lts.

It is also a best practice to review your SAS appli cations and the data that they use and determine wh at your
per process and overall I/O throughput requirements are before you begin testing. This will help you set
realistic and beneficial performance goals for your organization.

There are some basic command style tests that can be run to determine if your compute, network and storage
infrastructure can provide the I/O throughput sufficient to meet your performance expectations with your SAS
applications. SAS typically writes in 8K file chunks to the file system. The most important aspect from an I/O
perspective for SAS is MB/s rather than IOPS. You should review the types of SAS applications that you are running
and get an idea of what type of throughput you want to get out of your file systems. The following is a good, free tool
to sanity check your file system BEFORE installing and running SAS in order to determine if your file system will be
able to scale and provide the level of throughput required by your SAS applications.

Non-SAS Tool (UNIX Systems (for Windows Systems ref er to the SAS tool in the following section)):
Run the following steps initially on a single grid node that has access to the file system. Once you have
completed the testing on a single grid node, determine the scalability by running these steps
simultaneously on 2 grid nodes, then 5 grid nodes and then 10 grid nodes. The increments you choose
may vary depending on the number of grid nodes in your test environment. The goal would be to see
near-linear scalability. For example, 1 server = 100 MB/s sustained, 2 servers to NAS = 199 MB/s, 5 = 490 MB/s,
etc. You can use operating system commands/tools or third party tools to monitor and measure the I/O rates.

Do the following to check the IO throughput rates on UNIX systems prior to running any SAS applications. First,
create two very simple shell scripts. The first script will test the write IO throughput rate and the second script will
test the read IO throughput rates.

iowritetest.sh

 dd if=/dev/zero of=/filesystem/dd1.data bs=64k count=250000
 sync

This script creates a file in the /filesystem directory (you will need to replace /filesystem with a valid directory name
on your computer). The blocksize for the file is 64k and the total size will be 16GB. You can make the file smaller by
changing the count, but please note you need to create a file greater than the amount of physical RAM in your box.

ioreadtest.sh

 dd if=/filesystem/dd1.data of=/dev/null bs=64k count=250000

This script reads the file that was created by the iowritetest.sh script. Again, you will need to replace the /filesystem
with the directory name of where you created the file.

Now that the scripts are ready, here is how you execute them on your UNIX system. Please note that on Linux
systems you will use the time command instead of the timex command listed below.

 sync
 timex iowritetest.sh

3

 sync
 timex ioreadtest.sh

The sync command is used to flush all previously unwritten system buffers out to disk. This will insure there are no
leftover write activities going on your computer before you start your test. The timex command gives time
information for any command that you can run from a UNIX command prompt.

Here are example numbers timex echoed to the xterm screen for the write test:

 Real 3:13.85
 User 0.66
 Sys 2:14.81

Here are example numbers timex echoed to the xterm screen for the read test:

 Real 2:11.56
 User 0.72
 Sys 1:23.76

To determine the Mbytes/second IO throughput rate, you determine the number of MBs written (16 (because we ran
a 16GB test) * 1024) and divide it by the number of second of real time it took to do the task.

So, the write IO throughput rate is 16,384 divided by 193.85 for a total of 84.52 MB/sec IO throughput rate.
The read IO throughput rate is 16,384 divided by 131.56 seconds for a total of 124.58 MB/sec IO throughput rate.

SAS Tool (All Systems):
Run the following steps initially on a single grid node that has access to the file system. Once you have completed
the testing on a single grid node, determine the scalability by running these steps simultaneously on 2 grid nodes,
then 5 grid nodes and then 10 grid nodes. The increments you choose may vary depending on the number of grid
nodes in your test environment. The goal would be to see near-linear scalability. For example, 1 server = 100 MB/s
sustained, 2 servers to NAS = 199 MB/s, 5 = 490 MB/s, etc. You can use operating system commands/tools or third
party tools to monitor and measure the I/O rates.

Do the following to check I/O throughput rates on all systems using two very simple SAS jobs. First, create the two
simple SAS jobs. The first job will test the write IO throughput rate and the second job will test the read IO
throughput rate.

write.sas

 OPTIONS FULLSTIMER SOURCE SOURCE2 MSGLEVEL=I MPRINT NOTES;
 PROC OPTIONS GROUP=MEMORY;
 RUN;

 %LET COUNT=250000;
 %LET DIGITS=0123456789;

%LET
INITSTR=%DIGITS%DIGITS%DIGITS%DIGITS%DIGITS%DIGITS%DIGITS%DIGITS
%DIGITS%DIGITS%DIGITS;

 OPTION BUFSIZE=64K;
 LIBNAME PERM “/filesystem“;
 DATA PERM.DS;
 LENGTH C $255;
 RETAIN C “&INITSTR“;
 DROP I;
 DO I=1 to 256*&COUNT;
 OUTPUT;
 END;

4

 RUN;

 X “sync“;
 RUN;

This SAS job creates a file in the /filesystem directory (you will need to replace /filesystem with a valid directory
name on your file system). The blocksize for the SAS data file is 64k and the total size will be 16GB. You can make
the file smaller by changing the MB= value, but please note you need to create a file greater than the amount of
physical RAM in your box

read.sas

OPTIONS FULLSTIMER SOURCE SOURCE2 MSGLEVEL=I MPRINT NOTES;
 PROC OPTIONS GROUP=MEMORY;
 RUN;

 LIBNAME PERM “/filesystem“;
 DATA _NULL_;
 DROP _ALL_;
 SET PERM.DS(DROP=_ALL_);
 RUN;

This SAS job reads the file that was created by the write.sas SAS job. Again, you will need to replace the /filesystem
with the directory name of where you created the SAS data file.

Now that the SAS jobs are ready, here is how you execute them:

 sync
 sas write.sas

 sync
 sas read.sas

To get the numbers for the SAS write test, you need to open the write.log file and scroll to the very bottom. Here are
example numbers from the write test:

 Real time 3:25.70
 User CPU time 33.60
 System CPU time 1:52.27

To get the numbers for the SAS read test, you need to open the read.log file and scroll to the very bottom. Here are
example numbers from the read test:

 Real time 2:38.53
 User CPU time 21.97
 System CPU time 1:23.89

To determine the Mbytes/second IO throughput rate, you determine the number of MBs written (16 (because we ran
a 16GB test) * 1024) and divide it by the number of second of real time it took to do the task.

RUNNING SAS ON THE GRID
When moving your SAS workload to the grid it is a b est practice to identify a couple of applications t hat
either already make use of MP CONNECT or that lend themselves to parallelization as well as a couple o f ad
hoc SAS jobs that you may want to execute on your g rid environment.

A grid infrastructure provides many benefits to a SAS enterprise deployment including:

5

• Application acceleration – Significant performance increases are possible for those applications that can
be decomposed into independent subtasks of work that can be distributed and executed in parallel on a
grid.

• Load balancing and policy enforcement for multiple applications – Grid allows you to create a virtual server
environment to execute non-parallel applications from multiple users and to share and provision resources
in order to most effectively balance workload and meet service levels across the enterprise.

For application acceleration, identify a couple of SAS jobs that are well suited for decomposition and parallelization.
Ideally you will already have SAS programs that make use of the MP CONNECT feature of SAS/CONNECT. If that
is the case you can very easily modify these programs to execute with SAS Grid Manager by adding a few
statements to the beginning of your program. Refer to “Sample Code to Grid Enable SAS Programs” at
http://support.sas.com/rnd/scalability/grid/gridfunc.html for the exact statements needed. No other modifications to
your program are necessary.

If you do not have a program that already leverages the MP CONNECT capability, you need to identify an application
that has multiple independent units of work. Further, the independent units of work need to consume sufficient
compute or I/O resources to warrant distribution and execution on a grid. A good way to determine this is to look at
the SAS log file from a recent run and the elapsed time field from the fullstimer output at the end of each job step.
The larger the time required to execute the job steps, the more potential there is for performance gains through
parallelization. It is also important that this time is being spent in SAS rather than outside of SAS, such as doing an
external DBMS query. Once you have identified a program that is a good candidate for parallelization, you will need
to modify it to add the MP CONNECT statements as well as the grid enabled statements referenced by the link
above. You can find the details of the MP CONNECT statements under “SAS/CONNECT Software” at
http://support.sas.com/rnd/scalability/tricks/index.html .

 Load balancing and policy enforcement of multiple applications also has the benefit of decoupling the knowledge of
the IT infrastructure from the application. Users can submit their SAS applications to a virtual environment and SAS
Grid Manager will determine the appropriate resource for executing the application. In addition, policies can be
defined to give prioritization to specific users, to enforce time policies such that certain machines are only available
during certain times of the day, etc. Also your SAS programs can be submitted to the grid through your favorite
interface; whether that is batch submission or interactive submission using SAS Display Manager. This is done
without any modifications at all to the SAS programs. You can find the Grid Toolbox at
http://support.sas.com/rnd/scalability/grid/download.html which contains batch submission scripts as well as a new
key definition for DMS submission.

In many cases submitting whole SAS jobs to the grid will result in faster execution either due to running them with
SAS9 which supports multi-threading in many procedures, faster processors on newer grid hardware or because the
jobs will be load balanced to the most appropriate machine. Just as important as performance improvements in this
case is the ability to define and manage policies from a central location through SAS Grid Manager. This is a very
valuable capability that should not be minimized.

CONCLUSION
Grid computing offers tremendous potential to reduce costs and increase performance. The most successful grid
environments will be designed to ensure that the nodes in the grid spending more time computing than they spend
communicating. When testing and benchmarking a SAS grid environment it is critical that you examine your SAS
applications and determine the necessary I/O throughput required for successful execution. Once that has been
determined there are several steps outlined in this paper that can be followed to ensure that the infrastructure will
meet your performance expectations and to help you move your SAS workload to the grid.

FOR MORE INFORMATION
For more information about SAS and grid computing, visit the following websites:
SAS Scalability and Performance Community
http://support.sas.com/rnd/scalability/grid
SAS grid website
http://www.sas.com/grid

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

