
1

Creating That Perfect Data Grid Using the SAS® Output Delivery System
 Revised

Chevell Parker, SAS Institute Inc., Cary, NC

ABSTRACT
Using the SAS Output Delivery System (ODS), you can create that perfect data grid with functionality that resembles
.NET files or Microsoft Excel applications. Using ODS tagset options or dialog boxes, the data grid dynamically sorts,
filters, freezes rows and columns, creates tables and panels, hides columns, applies styles, applies alternating row
and columns barriers, and saves data to various formats. Microsoft Office applications also include other functionality
such as sending tables from a Web page to individual sheets within a Microsoft Excel workbook, modifying column
widths, modifying orientation, adding headers and footers, rotating headers, adding graphics, updating existing
worksheets with tables, saving table as native excel files, creating pivot tables, applying Excel formats, and creating
Microsoft PowerPoint slides with tables.

INTRODUCTION
A data grid, as defined in this document, is simply one or more tables of data that are generated with a SAS
procedure or with the DATA step. The following sections illustrate ways you can make your tables, or grids, of data
more useful by using options to do the following:

• enhance the presentation or readability.
• maximize the ability to analyze and manipulate your data
• generate useful reports with limited effort and knowledge of the TEMPLATE procedure and the SAS Output

Delivery System (ODS).

Most of the examples in this paper use the TableEditor tagset (or, destination) to enhance the functionality of the data
grid. Tagsets consist of events (such as System_Title, Header, Data, System_Footer, and others) that are triggered in
a particular order based on a SAS procedure or DATA step. The TableEditor tagset inherits from the HTML4 tagset
that is used by the HTML destination.

Note: To download the TableEditor, see the link in the section Resources. The download file contains a readme file
with instructions on how to download the TableEditor. This file also includes all the options that can be used with the
TableEditor.

The TableEditor tagset is not a replacement for current methods of generating styles (such as style templates) using
ODS. Instead, you can use the tagset in conjunction with current methods to create styles and enhancements for your
data grid. The TableEditor also enables you to generate reports using a common set of options across all procedures.
Regardless of whether a procedure (such as the PRINT, REPORT, or TABULATE procedures) supports style
overrides, you can modify the grid by selecting options of the tagset’s parameters in the procedure options.

Much of the functionality generated by the data grid examples that are discussed in this paper is mainly reserved for
use in applications such as .NET, Java, or Excel. However, the functionality that the grid generates is created by
using the ODS Markup Language, cascading style sheets (CSS), and scripting. Much of the output generated by the
data grid is for the Web, and this type of output is supported in the Microsoft Internet Explorer browser.

ODS MARKUP LANGUAGE
ODS Markup Language gives you the ability to modify tagset events in ways that range from modifying a tag to
changing the order in which events are triggered, and even to preventing an event from being triggered at all. A good
tool for modifying tagsets is the EVENT_MAP tagset. EVENT_MAP is a diagnostic tagset that displays the flow of the
procedure or the DATA step to include how the events are triggered with all of the metadata. You can use the
information produced by this diagnostic tagset to modify and generate other tagsets. The EVENT_MAP tagset was
used heavily in the creation of the TableEditor tagset.

The examples presented in this paper were created with ODS Markup Language. ODS Markup Language provides
the ability to access and modify all of the data and the metadata that generated from a procedure or a DATA step.
Based on this information, you can decide how the output should be generated. In SAS

®
 9.1, DATA step functions

that enable you to generate any type of output that you want to produce were added to the ODS Markup Language:
for example, ExcelXP, CSV, LaTex, HTML, various types of XML, and other formats were generated at SAS with the
ODS Markup Language.

2

USING STYLES TO ENHANCE YOUR DATA GRID
You can use ODS to modify styles and enhance your data grid in a variety of ways. For example, one way is to use
style templates, which are created by the TEMPLATE procedure. Style templates consist of style elements, which
modify the overall appearance of output that is generated with ODS. A style element is made up of style attributes
that modify the behavior of the style element or some part of the output (such as the color or font). PROC TEMPLATE
provides various types of templates (such as style, tagset, table, and statgraph templates) that you can apply to data
grids. All of these templates are stored in an item store (which is a member of a SAS library). You can find detailed
information about these style elements and attributes in SAS OnlineDoc 9.1.3
(support.sas.com/onlinedoc/913/docMainpage.jsp) and other SAS documentation.

In addition to using PROC TEMPLATE, you can create styles using other methods, such as cascading style sheets
for markup output and style overrides for procedures that support style overrides.

When you are ready to modify a grid, you need to determine what style elements and attributes you want to modify.
To do that, you need to know what particular elements and attributes are associated with the output. You can
dynamically determine the style elements and attributes that are associated with output by using the diagnostic tagset
Style_Popup. Click on any item on the page to display a pop-up window with the style element currently being used
along with the attributes specified for the element, as shown in Display 1. You can also mouse over items of the page
to see the element names. The following example illustrates how to use the Style_Popup as a diagnostic tagset:

ods tagsets.style_popup file=’temp.html’;

proc print data=sashelp.class;
 title “Tagset Style_Popup”;
run;

ods tagsets.style_popup close;

Display 1. Determining Style Elements and Attributes Using the Style_Popup Tagset

GENERATING STYLES WITH THE TableEditor TAGSET (DESTINATION)
After you determine which style elements and attributes you want to modify, you can easily modify them using options
in the TableEditor tagset. This method is an easy approach to creating styles for Web pages because the only thing
you need to provide is the value of the option. Specifying options to the tagsets enables you to modify various parts of
the output. To generate the perfect data grid, the data needs to stand out in a way that shows the meaning behind
the data. People often achieve this effect with graphics. However, you can do an effective job using just data and
styles, such as the Styles.Mystyles template, which is provided by default when you download the TableEditor tagset.

This style provides a similar appearance to Windows applications as shown in Display 4. Regardless of the style that
you decide to use, you can modify or override the chosen styles using options. You can make modifications using
style overrides in some SAS procedures, CSS or with PROC TEMPLATE, as mentioned previously. This method
(overriding the style by modifying the options) does not require any knowledge of ODS to generate some very
aesthetic and useful reports. You can also use this method in conjunction with the other methods of style generation,
as well.

3

Creating Styles by Modifying Options
In the following example code, the default style for a data grid is changed by modifying options. The title size is
changed, and colors are changed for the header, row headers, page background, foreground, grid line, and scroll bar.
Display 2 shows the new output with the modifications.

ods tagsets.tableeditor
 file="temp6.html"
 options(header_bgcolor="black"
 header_fgcolor="tan"
 rowheader_bgcolor=”black”
 rowheader_fgcolor="tan"
 data_bgcolor="beige"
 gridline_color="black"
 background_color="tan"
 scrollbar_color="black"
 title_size="20pt");

proc print data=sashelp.class;
 title c=black "Adding Styles";
run;

ods tagsets.tableeditor close;

Highlighting a Row with Color
The next example shows how to enhance the data grid by applying the Styles.Mystyle template, which is installed with
the tagset. If you use Styles.Mystyle, or any other style that does not have a background color, you can include the
HIGHLIGHT_COLOR= option to highlight a row in a specified color when you move your mouse over the row, as
shown here in Display 3.

 ods tagsets.tableeditor
 file="temp6.html"
 style=mystyle
 options(highlight_color="pink"
 scrollbar_color="beige"
 title_style="normal");

 proc print data=sashelp.class;
 title "Mouseover colors";
 run;

 ods tagsets.tableeditor close;

ACCENTUATING DATA BY ALTERNATING COLORS
Another way to accentuate your data and make the data grid more readable is to use alternating colors for rows and
columns. You can apply alternating colors in a numbers of ways. For example, you can incorporate a table template
that uses the CELLSTYLE statement or use a CALL DEFINE statement in PROC REPORT. You can also create this
same effect using options in TableEditor, regardless of the procedure that is used.

Alternating Column Colors
The following example illustrates how to make data grid columns more visible by using alternating column colors that
are created with the COL_COLOR_EVEN= and COL_COLOR_ODD= options. As shown in Display 4, this example
uses other options, such as ROWHEADER_BGCOLOR= and GRIDLINES=, to create other color effects.

Display 2. Creating Styles by Modifying Options

Display 3. Highlighting a Row with Color

Highlight
color

Row
Header

Title

Background

Header

Data

4

 ods tagsets.tableeditor
 file=”temp.html”
 options(rowheader_bgcolor=”green”
 background_color=”white”
 rowheader_fgcolor=”white”
 header_bgcolor=”#b0b0b0”
 header_fgcolor=”green”
 data_bgcolor=”#b0b0b0”
 col_color_even=”#e0e0e0”
 col_color_odd=”white”
 gridlines=”cols”);

 proc print data=sashelp.class;
 title “Alternating column colors”;
 run ods _all_ close;

Alternating Row Colors
The next example demonstrates how to modify the background colors for the data rows using the
BANNER_COLOR_EVEN= and the BANNER_COLOR_ODD= options to create alternating row colors. You can also
change the foreground colors by using the FBANNER_COLOR_EVEN= and the FBANNER_COLOR_ODD= options.

 ods tagsets.tableeditor
 file=”temp.html”
 options(header_bgcolor=”darkblue”
 header_fcolor=”white”
 rowheader_bgcolor=”lightblue”
 banner_color_even=”white”
 banner_color_odd=”#eeeeee”
 gridlines=”no”);

 proc print data=sashelp.class;
 title “Alternating column colors”;
 run;

 ods_all_close;

Alternating Foreground Banner Colors
Display 6 generates alternating foreground banner colors and modification of other colors.

ods tagsets.tableeditor file=”temp.html”
 options(fbanner_color_even=”white”
 fbanner_color_odd=”yellow”
 background_color=”black”
 header_bgcolor=”black”
 header_fgcolor=”orange”
 data_bgcolor=”black”
 gridline_color=”red”);

proc report data=sashelp.class nowd;
 title c=orange “Alternating row
 colors”;
run;

ods _all_ close;

Display 4. Alternating Column Colors

Display 5. Alternating Row Colors

Display 6. Alternating Foreground Colors

5

ALTERNATING FOREGROUND, BACKGROUND AND COLUMN COLORS
This example creates a table that uses a combination of alternating foreground and background colors as well as
alternating column colors.

ods tagsets.tableeditor file=”temp.html”
 options(col_color_odd=”pink”
 col_color_even=”purple”
 banner_color_odd=”gold”
 fbanner_color_even=”red”
 fbanner_color_odd=”green”
 header_bgcolor=”red”
 header_fgcolor=”white”
 background_color=”white”);
proc print data=sashelp.orsales noobs;
 title c=gold “Alternating colors”;
run;

ods _all_ close;

IMAGES AND CAPTIONS
You can also use Images and captions to enhance your data grid. Images are used, in particular, as a signature or a
logo on a page. You can add images in various ways, including with ODS modifying styles and with tagset options.
Captions are also useful for enhancing your data table, enabling you to provide descriptive elements to parts of the
table. Such descriptions might include a date, information about the table, or a simple explanation.

Adding an Image and a Caption
This example uses the IMAGE_PATH= option in the TableEditor tagset to add an image as a logo. The example also
uses the IMAGE_JUST= option, the CAPTION_TEXT= option, and the CAPTION_BACKGROUND= option. You
specify your caption text in the CAPTION_TEXT= option. In this example, the caption, Table info, appears in a banner
above the table.

Note: If you have multiple captions, you must separate each caption string with a comma in the CAPTION_TEXT=
option.

The CAPTION_BACKGROUND= option enables you to modify the color of the caption background. You can also
modify the captions with the CAPTION_BGCOLOR=, CAPTION_FGCOLOR=, CAPTION_FONT=, and
CAPTION_JUST= and the BACKGROUND_IMAGE= options.

 ods tagsets.tableeditor file="temp.html"
 options(background_color="white"
 image_path="c:\temp\title08.jpg"
 image_just="center"
 header_bgcolor="red"
 header_fgcolor="white"
 banner_color_even="orange"
 banner_color_odd=”white”
 caption_text="Table info"
 caption_background="orange");

 proc print data=sashelp.class(obs=15) noobs;
 run;

 ods tagsets.tableeditor close;

Adding an Image as a Background

Display 7. Alternating Foreground, Background, and
Column Colors

 Display 8. Adding an Image and a Caption

6

This example includes a logo image, but it also adds a separate image as the background for the page.

 ods tagsets tagsets.tableeditor
 file=”temp.html”
 options(background_image=”c.\sas.gif”
 image_path=”c:\temp\title08.jpg”
 header_bgcolor=”royalblue”
 header_fgcolor=”white”
 banner_color_odd=”white”
 banner_color_even=”lightblue”
 caption_text=”&sysdate”
 caption_just=”left”);

 proc print data=sashelp.class(obs=15) noobs;
 run;

 ods tagsets.tableeditor.close;

DYNAMIC STYLES
Styles can be generated that give you the ability to
dynamically modify the presentation of your data. To generate dynamic styles, you specify the TableEditor tagset’s
STYLE_SWITCH= option. This option generates an options list on your Web page from which you can choose and
load different styles (CSS files). To load the CSS files, you use the same method that is used with the ODS HTML
destination; that is, the URL= option within the STYLESHEET= option. You specify existing CSS files in the URL=
option.

You can create CSS files (with a .css extension) that are comparable to SAS template files by using
STYLESHEET=”filename.css” along with the SAS template name in the STYLE= option.

Note: If you have SAS® Enterprise Guide® installed, you will have a .css file comparable to the template styles (in the
SASHELP location) that are shipped with the SAS® System.

Creating a CSS File from a Single Template Style
The following example illustrates how to use the STYLESHEET= option to create a CSS file from a single template
style. In this example, the first ODS statement uses the STYLESHEET= option to create the .css file. Later in the
program, a macro is included that reads all of the SAS template styles and queries the DICTIONARY.STYLES table
in order to convert the template styles to .css files. Once the files are converted, they can be included in the URL=
option within the STYLESHEET= option in the ODS statement that appears before the PROC PRINT statement.

 ods html stylesheet=”c:\temp\sasweb.css” style=styles.sasweb;

 /* CSS setup */
 options mprint sgen;
 proc sql;
 select scan(style,2,".") into:temp separated by " "
 from dictionary.styles;
 run;
 quit;

 %macro test(path=c:\temp);
 %let x=1;

 %do %while(%scan(&temp,&x," ") ne);
 %let tmp=%scan(&temp,&x," ");

 ods html stylesheet="&path\&tmp..css" style=styles.%scan(&tmp,1,".");

 %let x=%eval(&x+1);

 %end;
 %mend;
 %test()

 ods tagsets.tableeditor path="c:\temp\" file="temp.html"

Display 9. Adding an Image as a Background

7

 options(style_switch="yes")
 stylesheet=(url="default.css analysis.css astronomy.css meadow.css
 sasweb.css statistical.css") ;

 proc print data=sashelp.class;
 title "Dynamic style switch";
 run;

 ods tagsets.tableeditor close;

HIGHLIGHTING DATA
One of the jobs of a good data grid is to enable you to get the most information from the data and effectively analyze
it. When data is not in a format that can be easily used, that is when graphs are usually added or data is exported to
other applications. You can enhance your data grid in a number of ways that facilitate effective presentation and
analysis. This section explains some of these ways to enhance your data grid, including the following:

• scaling tables
• adding Web tabs
• adding filters
• sorting data
• positioning data
• modifying columns
• adding check buttons to highlight data

SCALING TABLES
In certain situations, you might need to scale your table. You can scale tables using the following options:

• ZOOM= option—scales the overall output according to the value of the argument that you use. This type of
scaling is helpful when you need to reduce the size of your table in order to keep all of your data in a viewable
area of the browser.

• ZOOM_TABLE= option—enables you to specify the size of individual tables. In the option syntax, you must
separate the values with commas.

• ZOOM_TOGGLE= option—enables you to control the zooming feature interactively.

The following program uses the ZOOM_TABLE= and the ZOOM_TOGGLE= options to scale two tables.

Display 10. Using Dynamic Styles to Enhance Your Data Presentation

8

 ods tagsets.tableeditor file=”filename.html” options(zoom_table=”60%,80%”
 zoom_toggle=”yes”
 background_color=”white”);

 proc print data=sashelp.orsales(obs=3);
 title “Table zoomed at 60%”;
 run;

 proc print data=sashelp.orsales(obs=3);
 title “Table zoomed at 80%”;
 run;

 ods tagsets.tableeditor close;

 Display 11. Scaling Tables Using Zoom Options

ADDING WEB TABS
Web tabs enable you to display a single graph or table by selecting its respective tab. You use the WEB_TABS=
option to generate tabs. Multiple tabs in the WEB_TABS= option must be separated by commas. While they look
similar to worksheets you would see in Microsoft Excel, these sheets are actually generated in Base SAS® software.
This is also a good way to print the information in the tab that you are interested in.

The following example illustrates how to create Web tabs with the WEB_TABS= option.

ods tagsets.tableeditor file=”filename.html”
 options(web_tabs=”Means,Gchart,Freq,Report”)
 style=statistical;

proc means data=sashelp.class;
run;

proc gchart data=sashelp.class;
 vbar age;
run;
quit;

proc freq data=sashelp.class;
run;

proc report data=sashelp.orsales nowd;
run;

ods tagsets.tableeditor close;

9

 Display 12. Adding Web Tabs to Your Data Grid

SORTING
Another key to an effective data grid is having the ability to view and analyze the data in several ways without having
to resubmit the code. The TableEditor destination enables you to do just that—you can dynamically sort table
columns by clicking on the column headers. By specifying the SORT= option, you can obtain several views of the
data without leaving the page. You can sort on five different data types:

• String—used for character data.
• Number—used for numbers that are integers and real numbers.
• Numberx (Number Extended)—used for numbers that contain a comma or a dollar sign
• Date—used with the DATE9., MONNY., and MMYYDD. date formats.
• None—prevents the columns from being sorted.

These data types are handled automatically with the exception of the SAS 9.1 REPORT procedure which has a
default type of String for all fields. To override the default data types or to add a data type in SAS 9.1 PROC
REPORT, use the DATA_TYPE= option. This option specifies or overrides the data types of the columns. Each data
type must be separated by a comma. Note: You can also set a column’s data type using the TAGATTR= style
attribute with the appropriate data type for the column. To determine the default data types for a column, use the
DESCRIBE= option. This option displays a red diamond in columns that are of type Number or Numberx, a blue circle
for columns of type String, and an hourglass for columns of type Date.

Determining Column Data Types and Sorting the Columns
The following program uses the SORT= and DESCRIBE= options to sort table columns and to display icons that
denote the data type for each column.

 ods tagsets.tableeditor file="filename.html" style=sasweb2
 options(sort="yes" sort_arrow_color="brown" describe="yes"
 data_type="Number,Number,String,String,String,Number,Number,Number"
 banner_color_even="beige");

 proc report data=sashelp.orsales(obs=10) nowd;
 title "Sorting data";
 define year / display;
 rbreak after / summarize;
 run;

 ods tagsets.tableeditor close;

10

Display 13. Using the DESCRIBE= Option to Determine Column Data Types and the SORT= Option to Sort Columns

Adding Images, Underlining, and Color to Sorted Columns
When you specify the SORT= option, you can also include other sort options that enable you to add images, modify
the arrow colors, and underline column headers.

• SORT_IMAGE= option—displays an image in the column header when you also specify the SORT= option.
If the data type for a column is None, that column cannot be sorted. Therefore, a sort image will not be
displayed.

• SORT_UNDERLINE= option—adds an underline to a column header when you also specify the SORT=
option.

• SORT_COLOR= option—enables you to specify colors for the Up and Down arrow images.

You can exclude summaries from the sort by using a combination of the EXCLUDE_SUMMARY=”YES” option with
HTMLCLASS=”noFilter”.

In the following example, the data type None is specified for the first two columns, which means that those two
columns cannot be sorted. The other columns use the other various data types. This is a client-side sort, therefore
more observations might result in lower performance.

 ods tagsets.tableeditor file="filename.html" style=sasweb2
 options(sort="yes"
 sort_arrow_color="brown"
 exclude_summary="yes"
 sort_image="c:\temp\newfolder\sort10.jpg"
 data_type="None,None,String,String,String,Number,Numberx,Numberx"
 banner_color_even="beige"
 banner_color_odd="ffffcc"
 fbanner_color_even="blue"
 fbanner_color_odd="green");

 proc print data=sashelp.orsales(obs=10) style(gtotal)={htmlclass="noFilter"} noobs;
 title "Exclude summay values";
 format year 5.;
 format profit total_retail_price dollar10.;
 sum _numeric_;
 run;

 ods tagsets.tableeditor close;

Red diamond icon
displayed by the

DESCRIBE= option
Up arrow

11

Display 14. Adding Images and Arrow Colors as Well as Excluding the Summary from the Sorting Process

FILTERS
Microsoft Excel has the capability of adding filters to worksheets, which is helpful when you want to drill down and
look at a specific group of data. You can add filters that enable you to drill down to a specific value or group of values
without leaving the page. Using the TableEditor, you can also add filters that enable you to drill down to specific
values or groups of values without leaving the Web page. The TableEditor tagset uses the following options to create
a filtering effect:

• AUTOFILTER= option—indicates specific tables to filter. If this option is not specified, filters will be applied
to all tables. Values for the AUTOFILTER_TABLE= option are a list of table numbers, separated by
commas. When you specify this option along with sorting options, you can create a dynamic and powerful
grid.

• FILTER_COLS= option—enables you to select specific columns to filter. You specify the column numbers,
separated by commas.

• AUTOFILTER_ENDCOL= option—enables you to specify the last column to which filters are applied.
• AUTOFILTER_WIDTH= option—enables you to add a uniform width to the filters.

The following program applies filters to the table columns:

ods tagsets.tableeditor file="filename.html"
 style=styles.printer
 options(header_bgcolor="maroon"
 header_fgcolor="white"
 rowheader_bgcolor="maroon"
 rowheader_fgcolor="white"
 data_bgcolor="beige"
 sort="yes"
 autofilter="yes"
 autofilter_width="4em");

Sort arrow color

Sort image

Excluded
summary

12

proc print data=sashelp.class(obs=10);
 title “Sort and filter columns”;
run;

ods tagsets.tableeditor close;

 Display 15. Filtering Table Columns

POSITIONING
The ability to position data is important to any data grid. Using the following TableEditor options, you have the
capability to freeze column headers and row headers, much like you can in Excel.

• FROZEN_HEADERS= option—enables you to lock, or freeze, column headers. When the headers are
locked, they cannot be moved when you scroll the page.

• FROZEN_HEADERS_ALL= option---Enable you to lock you to lock, or freeze, column headers for multiple
tables.

• FROZEN_ ROWHEADERS= option—enables you to freeze row headers. If FROZEN_ROWHEADERS= is
set to “YES”, procedures or statements with columns that use the ROWHEADER style element will be frozen
when the page width has been reached. Examples of procedures that use the ROWHEADER style element
include the following:

o PROC PRINT with the OBS column or with variables that are specified in the ID statement.
o PROC TABULATE for variables on the row dimension. This option can also take values for the

column numbers for the columns that should use this ROWHEADER style allowing it to freeze.

The FROZEN_HEADERS= and the FROZEN_ROWHEADERS= options are single-table options; that is, they are
only applicable for a single table on the page with Internet Explorer. The FROZEN_HEADERS= option is designed for
use on a single long table. The FROZEN_ROWHEADERS= option is designed for use on a single, wide table.

The FROZEN_HEADERS= and FROZEN_ROWHEADERS= options can work as standalone options, or in
conjunction with the PAGEHEIGHT= and the PAGEWIDTH= options. When the PAGEHEIGHT and PAGEWIDTH
options are not specified with the FROZEN_ROWHEADERS and the FROZEN_HEADERS options, the page width
and the page height are generated dynamically which is the width and the height of the viewable screen. When the
height or width is reached, the browser adds scrollbars vertically and horizontally, and column headers or rows are
frozen.

The PAGEWIDTH= option works well with either percentages or a width; the PAGEHEIGHT= option works better with
a defined width. These options help create a uniform look for each table. When you use the
FROZEN_ROWHEADERS= option, the browser recalculates for each row, which might cause performance problems
for long tables. (This does not happen with the FROZEN_HEADERS= option.) Therefore, you should not use the
FROZEN_ROWHEADERS= option for long tables, but rather for wide tables.

Filter applied to a
column

13

In the following example, the column headers and the first three columns are frozen.

ods tagsets.tableeditor
 file="filename.html"
 options(frozen_headers="yes"
 pageheight="300"
 frozen_rowheaders="1,2,3"
 pagewidth="50%");

proc report data=sashelp.orsales(obs=10)
 nowd;
 title "frozen rows and titles";
run;

ods tagsets.tableeditor close;

In the following example, the column headers and the first two columns are frozen. By not applying a pageheight=
and the pagewidth= option, it is applied dynamically based on the viewable area.

ods tagsets.tableeditor
file="temp.html"
options(frozen_headers="yes"
 frozen_rowheaders="yes");

proc print
data=sashelp.orsales(obs=50);
title "Frozen Headers and
Rowheaders";
id year quarter;
run;

ods tagsets.tableeditor close;

 Display 16a. Frozen Columns and Headers

In addition to freezing rows and columns headers, another great way to enhance your grid is to use panels. You can
convert tables and graphs into panels in order to display multiple tables or graphs on one page or to display a table
and a graph together. To create panels, you use the PANELCOL= option.

The following code generates two tables side-by-side on each page.

ods tagsets.tableeditor file="filename.html"
options(panelcols=”2”);

proc print data=sashelp.class;
run;

proc print data=sashelp.class;
run;

ods tagsets.tableeditor
 options(panelcols=”2”);

Display 16. Frozen Columns and Headers

Frozen Headers

Frozen Rowheaders

14

proc print data=sashelp.class;
 title “Table 1”;
run;

proc print data=sashelp.class;
 title “Table 2”;
run;

ods tagsets.tableeditor close

The next example displays a graph and a table side by side. The table has frozen headers as well as sorted and
filtered columns.

goptions hzise=5in vsize=5in ftext=swiss;
ods tagsets.tableeditor file=”filename.html”
 notitle
 options(header_bgcolor=”darkblue”
 header_fgcolor=”white”
 rowheader_bgcolor=”white”
 data_bgcolor=”white”
 frozen_headers=”yes”
 pageheight=”500”
 sort=”yes”
 autofilter=”yes”
 autofilter_width=”4em”
 zoom_table=”80%”
 panelcols=”2”);

proc print data=sashelp.class;
 title “Table 1”
run;

proc gchart data=sashelp.class
 title “Chart 1”;
 pie age;
run;
quit;

ods tagsets.tableeditor close;

MODIFYING COLUMNS
Using the TableEditor tagset, you can remove (hide) columns, remove column headers, and reorder the columns.
You can use the following tagset options to perform these tasks:

Display 18. Displaying a Table and a Graph Side by Side

15

• HIDE_COLS= option—At times, a full view of columns in a table is not necessary. An effective data grid will
provide the ability to dynamically remove columns from view. You can remove columns from a table with the
HIDE_COLS= option. When you add the HIDE_COLS= option, you can then remove (hide) unwanted
columns by double-clicking those columns. When this option is specified, a refresh button is automatically
added to the page. When you click the refresh button, the hidden columns are restored.

• HEADER_DISPLAY= option—In cases where you do not want to use column headers to describe the data,
you can use the HEADER_DISPLAY= option. Specifying HEADER_DISPLAY=”No” removes column
headers. Some SAS procedures, such as PROC REPORT, have the NOHEADER option. However, the
HEADER_DISPLAY= option will work across procedures.

• REORDER_COLS= option—There may be times when you want to change the layout of columns. The
REORDER_COLS= option gives you the flexibility to dynamically reorder columns. You can drag a column
to other locations. Note, however, that when you save or refresh the page, the default column order is
preserved.

The following example illustrates the HIDE_COLS = option and the REORDER_COLS= option:

ods tagsets.tableeditor
 file="temp.html"
 style=sasweb
 options(hide_cols="yes"
 reorder_cols="yes");

proc print data=sashelp.class(obs=10);
 title "Hiding and reordering columns";
run;

ods tagsets.tableeditor close;

CHECK BOXES
Displaying data in various ways makes for a good data grid. Another useful feature you might want to incorporate is
the check box. You can add check boxes to cells in your table. The reason why you might want to use check boxes
for a column is that they can provide a good visual for difficult-to-read columns. For instance, adding a check box to a
column that has a Boolean value will help to clarify the visual display of this column.

You use the RADIO= option to add check boxes to one or more columns. In the option, you need to separate each
column number with a comma. Using the RADIO= option along with the RADIO_CHECKED= option enables you to
check values in a cell based on the value. In the example supplied, the value of the column 2 of the cell should be
checked when the value is 1, and column 3 should be checked when the value is 0.

data one;
 retain responce1 responce2;
 set sashelp.class;
 responce1=round(ranuni(0));;
 responce2=round(ranuni(0));;
run;

proc print;
run;

ods tagsets.tableeditor file="temp.html"
 options(radio="2,3"
 radio_checked="1,0"
 highlight_cols="2#pink,3#yellow");

proc print data=one(obs=10);

 Display 19. Hiding and Reordering Columns

16

 title "Adding Check boxes";
run;

ods tagsets.tableeditor close;

ADDING FEATURES FOR PRINTING, BROWSER WINDOW COMMUNICATION, AND NAVIGATION
After you enhance your data grid, you might want to customize the page for printing, modify elements of
the actual browser window, and include a table of contents with a Tree view. This section explains the
methods for performing these additional enhancements.

PAGE SETUP AND PRINTING OPTIONS
The perfect data grid should not only look good on the screen, but it should also look good when you print it. Typically,
applications that have frozen headers will print only the material that can physically be viewed on the page and not the
full data. However, regardless of the amount of data that is presented in the browser window, you can use the
TableEditor destination to print all of your data, including column headers.

You can use the following TableEditor options to set up your data grid for printing:

• PAGEBREAK= option—When you print your data grid, you might want to remove page breaks from the
Web pages to prevent unnecessary wasting of paper when the information is printed. You can do that using
PAGEBREAK=”No”—you can also use this same option to place multiple tables on a page. To do that,
include the number of tables you want placed on a page. For example, if you want to include three tables,
the option will be PAGEBREAK=”3”.

• TOP_MARGIN=, BOTTOM_MARGIN=, LEFT_MARGIN=, and RIGHT_MARGIN= options—These options
give you the ability to modify page margins.

• PAGEBREAK_TOGGLE= option—You can dynamically modify page breaks directly from the Web page
with this option by selecting or de-selecting the check box.

• PRINT_DIALOG= option—This option is an interactive option that adds a dialog box to your Web page with
a list of functions you can select, including Print, Print Preview, Save As, Open File, and
Properties.

• PRINT_ZOOM= option—This option enables you to scale your printed output.
• FIT2PAGE= option—This option enables you to fit your output to the page so it will not be truncated when

you print the page.
• BLACKANDWHITE= option—With this option, you can specify that you want to print in black and white

rather than color.

The following example illustrates the use of the two interactive options, PAGEBREAK_TOGGLE= and
PRINT_DIALOG=, as well as the FIT2PAGE= option.

ods tagsets.tableeditor file=”filename.html”
 options(print_dialog=”yes”
 pagebreak_toggle=”yes”
 fit2page=”yes”
 rowheader_bgcolor=”teal”
 rowheader_fgcolor=”white”
 header_bgcolor=”teal”
 header_fgcolor=”yellow”
 background_color=”beige”
 data_bgcolor=”white”);

proc print data=sashelp.class;
run;
ods tagsets.tableeditor close;

Display 20. Adding Check Boxes to a Data Grid

17

You can also use an ActiveX control to manipulate headers, footers, and page orientation.. Typically, you cannot
make these kinds of modifications programmatically, except within a limited subset of browsers. The TableEditor
provides this capability by pointing to an ActiveX control. With earlier versions of the TableEditor, if the ActiveX control
did not exist on your computer, TableEditor pointed to a hosted cabinet (.cab) file that downloaded the control over
the Internet when you specified the ORIENTATION=, the PRINT_HEADER=, or the PRINT_FOOTER= options.

In the current version of TableEditor, the ActiveX control resides in a .zip file with the tagset installation. This file also
includes an executable (.exe) file that you can use for a single installation of the ActiveX control. If you need to install
the control for multiple users, you can use the .cab file to download the ActiveX control over the Internet. After you
install this ActiveX control, which was created by MeadCo, you can use the ORIENTATION=, PRINT_HEADER=, and
PRINT_FOOTER= options just as you can in Microsoft Excel.

ods tagsets.tableeditor file=”filename.html”
 options(print_header=”This is a header”
 print_footer=”This is a footer”
 orientation=”landscape”);

proc print data=sashelp.class;
run;

ods tagsets.tableeditor close;

BROWSER WINDOW OPTIONS
In addition to enhancing your data grid, you might also want to enhance the information in your browser window or
modify the size of the window. You can perform these tasks using the following options:

Display 22. Modifying Headers, Footers, and Orientation

18

• WINDOW_TITLE= option—You can use this option to display a title for the browser window.
• WINDOW_STATUS= option—This option enables you to add text or messages to the browser window

status line.
• ALERT_TEXT= option—If you have alert information that you need to make visible, this option creates a

dialog box with that information that displays when the page is opened. You will not be able to continue
viewing the page until you actively close the dialog box. This behavior ensures that the alert will be read.

• FIT2PAGE_MSG= option—This option displays a dialog box that specifies how much the page is being
scaled in order to fit the page.

• LOAD_MSG= option—With large tables, the browser typically does not indicate that the page is loading, so
you might think that it is not loading. You can solve this problem with the LOAD_MSG= option, which
displays a message specifying that the Web page is loading.

• LOAD_IMG= option—This option enables you to display an image when the page is loading. (For example,
you might want to display an animated image until the page is completely loaded.). The .zip file for the
TableEditor tagset download contains a couple of images you can use.

• WINDOW_SIZE= option—This option enables you to modify the size of the browser window when it is
opened. You can specify X and Y coordinate values for a specific height and width size, or you can use the
value MAX to open output in a maximized browser window. This option is not shown in the following
example, but the option syntax is WINDOW_SIZE=’x-value, y-value | MAX”. Setting the size in this option
guarantees how the window will be displayed, regardless of the environment.

• INCLUDE= option—You can use this option to include various types of files (HTML, PDF, Word, Excel) into
the browser. You just include the name of the file (if it is relative to the generated file) or the file pathname
that you want inserted into the browser. The file is inserted as an IFRAME file.

The following example illustrates the use of the WINDOW_TITLE=, WINDOW_STATUS=, FIT2PAGE=,
ALERT_TEXT=, LOAD_MSG=, and the LOAD_IMG= options.

ods tagsets.tableeditor file="temp.html" style=barretsblue
 options(window_title=”Informational Options”
 window_status=”Status bar info”
 fit2page_msg=”yes”
 alert_text=”Confidential!”
 load_msg="yes"
 load_img="c:\temp\image_files\sas.gif");

proc print data=sashelp.class;
 title "Dynamic style switch";
run;

ods tagsets.tableeditor close;

NAVIGATION AIDS
Unless you only have one page of data, you probably need navigation tools, such as a table of contents and drill-
down links, to help users navigate through your data. The section explains how to use various methods to create

Display 23. Loading Message Created with the
LOAD_MSG= Option

Display 24. Effects of the WINDOW_TITLE=,
WINDOW_STATUS=, WINDOW_SIZE=, and ALERT_TEXT=
Options

19

these navigation aids.

Creating a Tree View with the Table of Contents
You can create a tree view within the table of contents using the TableEditor. By default, TableEditor generates a
collapsed table of contents. To expand the table of contents, you simply click the plus sign (+) next to each item. The
TableEditor has several options you can use to modify this table of contents:

• TOC_EXPAND= option—displays the table of contents in expanded form
• OPEN_IMAGE= option—replaces the default “open” image (“-“) in the table of contents with an image that

you specify
• CLOSE_IMAGE= option—replaces the default “close” image (“+“) in the table of contents with an image

that you specify
• LEAF_ IMAGE= option—replaces the image that links to the table or graph with an image that you specify
• TOC_PRINT= option—provides the ability to print pages from the table of contents
• TOC_BACKGROUND= option—modifies the background color of the table of contents
• TOC_PRINT= option—adds a Print button to the table of contents

The next example shows the default table of contents generated with the TableEditor and adds a Print button.

ods tagsets.tableeditor file="temp.html"
 contents="temp2.html"
 frame="frame2.html" style=sasweb
 options(toc_print="yes");

proc print data=sashelp.class;
run;

proc freq data=sashelp.class;
run;

proc univariate data=sashelp.class;
run;

proc shewhart data=sashelp.class;
 cchart age*sex;
run;
quit;

ods tagsets.tableeditor close;

 Display 25. Adding a Tree View to the Table of Contents

EXPORTING YOUR DATA TO OTHER APPLICATIONS
For a more effective data grid, you need to be able to export data to other applications such as Excel. Exporting to
other applications gives you the capability to further analyze and manipulate your data in the environment of your
choice. The TableEditor has export options that enable you to move your data into other formats or applications. This
section discusses how to use that feature to format and move your data from a Web page into Office application.

20

EXPORTING DATA TO EXCEL
After you export your data to Excel, you can use automation from Internet Explorer and JavaScript to modify Microsoft
Office objects that enable you to access parts of applications, such as Excel. These objects let you modify such
features as page setup, filters, frozen headers, zooms, naming and updating sheets, style creation, graphics, pivot
tables and more.

Because this process uses JavaScript, which instantiates an ActiveX object, you can only perform these functions
from Internet Explorer. Based on the options that are specified to the TableEditor, you can export data to various
formats and applications. If you use the TableEditor FILE_FORMAT= option (or any of the export options), an
Export button will be added to your page. If you click this button, the application begins the export process. The
data, along with the formatting (depending on the options you choose), is copied to the target application (Excel). This
process is all driven with ODS Markup Language. The next sections discuss how you can use options to manipulate
the output for the exported data.

Carrying Styles Forward into Excel
Styles are carried forward from the Web-page into Excel by default if no Excel style has been specified. You can
specify styles that are not native Excel styles by applying any of the style methods that were discussed earlier in the
section “Using Styles to Enhance Your Data Grid.” This section discusses additional formatting options that you can
use to include Excel’s built-in formatting functionality. When you export to Excel (as well as to Word and PowerPoint),
the style viewed on the Web page is passed along to the target application as long as the format supports styles.
Therefore, you can specify Excel styles as well as the 25 styles that are shipped with Base SAS software, the CSS
style overrides, or the styles that you specify using options to the tagset.

Note: The browser supports quite a few more colors than Excel; therefore, when colors are exported, they might not
be exactly the same in Excel as they were on the Web page.

To use Excel styles, you need to specify the AUTO_FORMAT= option. These styles handle text wrapping pretty well.
If you select Formats ► AutoFormat from the Excel menu, you can see a list of available styles.

Note: Styles that are specified in the AUTO_FORMAT= option will override any format that is specified using styles or
options within SAS.

The following styles are available in Excel:

• Colorful1
• Colorful2
• Colorful3
• List1
• List2
• List3
• Classic1
• Classic2
• Classic3

• Accounting1
• Accounting2
• Accounting3
• Accounting4
• None
• Simple
• Report1
• Table1

 Display 26. Examples of Several Excel Styles

21

Using the AUTO_FORMAT= option, you can take advantage of any of the Excel styles. For example, you can use
AUTO_FORMAT=”None” to specify no formatting. Or you can specify AUTO_FORMAT=”Simple”, which incorporates
minimal formatting by adding gridlines and putting the titles in boldface. Note, if you don’t need the intermediate
HTML file, use the AUTO_EXCEL= option which will start the export immediately without selecting the export button.
Also, a path can be given to the work location which will not persist this file.

The following example uses the Excel style Colorful1:

ods tagsets.tableeditor file="%sysfunc(getoption(WORK))\temp.html"
options(auto_format="colorful" auto_excel=”yes”);

proc report data=sashelp.orsales(obs=5) nowd;
run;

ods tagsets.tableeditor close;

 Display 27. Data Grid Exported to Excel in the Colorful1 Style

The Excel styles can also be selected dynamically by adding the AUTO_FORMAT_SELECT= option. This option
generates a selection list with all of the available styles. Selecting a style exports the data to Excel with the with the
selected style.

ods tagsets.tableeditor path="c:\temp" file="tempc.html"
options(auto_format_select="yes");

proc print data=sashelp.class;
run;

proc print data=sashelp.class;
run;

ods tagsets.tableeditor close;

22

 Display 27A. Data Grid Exported to Excel in the with selected Style

Exporting Formats and Saving Files in Those Formats
You can export a number of file formats, including XML, HTML, SYLK, XLS, TXT, DOC, CVS, and others. As
mentioned previously, if you specify the FILE_FORMAT= option with one of the file formats, an Export button for
that format is added to the Web page. Selecting the Export button exports the file, in the specified format, to Excel.

To save one or more tables in a specified format, you need to specify the FILE_FORMAT= option in conjunction with
the EXCEL_SAVE_FILE= option. If you omit the FILE_FORMAT= option, Excel will use the XLS format, which is
Excel’s default native format. Note that when you specify a file path in the EXCEL_SAVE_FILE= option, you need to
use double backward slashes instead of single slashes; for example:

excel_save_file=”c:\\temp\\test.csv"

If you want to save this file in the background without opening Excel, specify the option VISIBLE=”No”.

Other methods for saving files are also available:

• EXCEL_SAVE_DIALOG= option—opens a dialog box in which you can name and save a file to a specified
location. You can use this option along with the DEFAULT_FILENAME= option in order to specify a default
filename in the dialog box.

• EXCEL_SAVE_PROMPT= option—generates a prompt window in which you can specify a location to
which you want to save the file.

• SAVEAS= option—enables you to save a file, and it adds a Save As button on the Web page. You can
also use this option in conjunction with the DEFAULT_FILENAME= option in order to specify a default
filename.

• QUIT= option—closes a file automatically after the file is saved.

In the following example, the file TEMP.HTML is saved, in the background, as a CSV file.

ods tagsets.tableeditor file="temp.html"
 options(sheet_name="Test"
 excel_save_file="c:\\temp\\test.csv"
 file_format="csv"

 visible="no" quit="yes");

proc print
data=sashelp.class;
run;

ods tagsets.tableeditor
close;

23

 Display 28. Saving a File in the CSV Format

ods tagsets.tableeditor file=”temp.html” style=styles.mystyle
 options(excel_save_dialog=”yes”
 default_file=”c:\\temp.xls”);

proc print data=sashelp.class;
run;

ods tagsets.tableeditor close;

/* This code segment uses the EXCEL_SAVE_DIALOG= option to create a
 dialog box in which you specify the location where you want the file
 to be saved. */

Enhancing Your Excel Output
The TableEditor tagset provides a set of options that can generate new Excel worksheets and workbooks. You can
use these options to display properties, define page setup, filter, and perform other tasks, creating high-quality reports
at the end. All of these Excel options add an Export button to your Web page.

• EXCEL_AUTOFILTER= option—adds automatic filters to the headers.
• EXCEL_ FROZEN_ HEADERS= option—enables you to lock (freeze) column headers.
• EXCEL_ZOOM= option—enables you to zoom in on a worksheet.
• EXCEL_DEFAULT_HEIGHT= option—specifies a default height.
• EXCEL_DEFAULT_WIDTH= option—specifies a default width.
• EXCEL_ORIENTATION= option—specifies the orientation of a worksheet.
• EXCEL_SCALE= option—scales the printed output.

The following example uses a combination of these options to create presentational output:

ods tagsets.tableeditor file="temp.html"
 options(excel_zoom="80"

Display 29. Creating a Dialog Box in Which You Specify a Filename and a Location in Which to Save a File

24

 excel_scale="90"
 excel_autofilter="yes"
 excel_frozen_headers="yes"
 excel_orientation="landscape"
 auto_format="list1"
 excel_save_file="c:\\temp\\temp.xls");

proc print data=sashelp.class;
run;

ods tagsets.tableeditor close;

Modifying Worksheets and Workbooks
At times, you might need to modify your Excel worksheets and workbooks in order to add information or rename
them, to move individual tables into separate worksheets, and so on. The TableEditor tagset provides options that
help you accomplish these tasks:

• SHEET_NAME= option—This option enables you to assign meaningful names to worksheets that are
generated from tables. This allows the worksheet to have a name closely related to the meaning behind the
data. This option provides the ability to name one or more tables from the Web page that are exported to the
spreadsheet.

• EXCEL_TABLE_MOVE= option—When combined with the SHEET_NAME= option, this option enables you
to place separate tables from your Web page into separate worksheets within the workbook. To specify
tables on separate worksheets, you specify the sheet names, separated by commas, in the SHEET_NAME=
option. Then, specify table numbers (from the page where you are moving the tables), also separated by
commas, in the EXCEL_TABLE_MOVE= option in the order that corresponds to their respective sheet
names in the SHEET_NAME= option. Each table will be on an individual sheet in the workbook, and the
tables will be named based on the corresponding sheet name.

Display 30. Enhanced Output

Landscape
orientation

Scaled
output

Frozen headers
and

autofilters

25

Note: If the EXCEL_TABLE_ MOVE= option is not specified, the first table is selected.

• AUTO_FORMAT= option—This option enables you to specify Excel styles for your generated worksheets.
(You can also use styles from the Web page.) You can use this option in conjunction with other options for
data presentation.

The following example uses the SHEET_NAME= option and the EXCEL_TABLE_MOVE= option to add
worksheets and move tables to those worksheets:

ods tagsets.tableeditor file="temp.html" style=sasweb
 options(sheet_name="CLASS,AIR,ORSALES"
 excel_table_move="1,2,3"
 excel_default_height="15"
 excel_frozen_headers="yes"
 excel_autofilter="yes"
 banner_color_odd="lightblue"
 banner_color_even="orange"
 excel_save_file=”c:\\temp\\temp.xls”);

proc print data=sashelp.class;
run;

proc print data=sashelp.air(obs=20);
run;

proc print data=sashelp.orsales(obs=20);
run;

ods tagsets.tableeditor close;

Inserting Worksheets
At times, you just need to add data to an existing Excel workbook. Using options with the TableEditor, you can insert
tables from a Web page into an existing workbook. One of the benefits of using the TableEditor options is that you
can insert the tables into file formats other than native Excel files. You can insert tables into any format supported by
Excel. However, to save the file, you must use a format that supports multiple worksheets. For instance, if you create
an XML file using the ExcelXP tagset, you can open the file and add a worksheet. Then, you can either leave the file
in its current XML format or save the file as a native Excel formatted file (which reduces the size of the file). This
capability to use different formats provides the full advantage in using other ODS destinations (such as the ExcelXP
or the MSOffice2k destinations). You can use the following options to insert a new worksheet and move tables to that
new sheet:

• UPDATE_TARGET= option—This option is used in conjunction with the SHEET_NAME= option and the
EXCEL_TABLE_MOVE= option. The UPDATE_TARGET= option specifies the name of the workbook to
which you want to add new worksheets; the SHEET_NAME= option specifies the name of the new sheet or
sheets you want to insert; the EXCEL_TABLE_MOVE= option moves the tables to their specified sheets.
Note that when you specify a file path in this option, you need to use double backward slashes instead of
single forward slashes.

Display 31. Modified Worksheet

26

• AUTO_ EXCEL=”Yes” option—You can use this option to automatically export to Excel when the page is
loaded. This does not require that you select the export button.

In the following example provides sample data that uses the ODS MSOffice2K destination to generate output that we
read into Excel that is in HTML format. The example demonstrates inserting the first two tables from the Web page
into this existing workbook that was generated with the MSOffice2K destination. You have the ability also to save
this file in the format of your choice.

 /* Sample data provided to generate a default file */
 /* that is inserted into the workbook. */

ods msoffice2k file="c:\temp\test.xls";

proc print data=sashelp.class;
run;

ods msoffice2k close;

ods tagsets.tableeditor file="filename.html"
 options(update_target="c:\\temp\\test.xls"
 sheet_name="Table1,Table2"
 excel_table_move="1,2" auto_format=”list2”

 excel_save_file=”c:\\temp\\temp1.xls”)style=sasweb2;
proc print data=sashelp.class;
run;

proc print data=sashelp.prdsale;
run;

ods tagsets.tableeditor close;

Updating Worksheets
The TableEditor tagset also enables you to update existing worksheets with contents from Web-page tables. Use the
following options to update worksheets:

• UPDATE_TARGET= option—specifies the target file that you want to update.
• UPDATE_SHEET= option—names the specific sheet that you want to update.
• UPDATE_ RANGE= option—defines the range of columns and rows to update on the worksheet. The

values for this option are specified in the order of column number and then row number.
• EXCEL_TABLE_MOVE= option—specifies which table you want to move from the Web page to the

worksheet.
• UPDATE_ FORMATTING= option—enables you to keep the destinations style or use the one specified.

Web queries can also be generated to update worksheets. For a full list of available options, see the readme file that

Display 32. Inserting Multiple Worksheets

27

is in the TableEditor download file. (The link to the download file is available in the Resources section of this paper.)

The following example uses the UPDATE_TARGET=, the UPDATE_SHEET=, the EXCEL_TABLE_MOVE=, and the
UPDATE_RANGE= options. Note that this program does not use the UPDATE_FORMATTING= option, which only
copied over the numbers.

 /* Create a sample workbook and worksheet to update using the
 ExcelXP destination */

ods tagsets.excelxp file=”c:\temp\test.xls” options(sheet_name=”Original Sheet”)
 style=sasweb;

proc print data=sashelp.class(obs=5) noobs;
run;

ods tagsets.excelxp close;

ods tagsets.tableeditor file="temp.html" style=sasweb
 options(update_target="c:\\temp\\test.xls"
 update_sheet="Original sheet"
 excel_table_move="1"
 update_range="8,1");
proc print data=sashelp.class(obs=5) noobs;
run;

ods tagsets.tableeditor close;

 Display 33. Updating a Worksheet

Pivot Tables
Excel pivot tables are another powerful feature that you can use to help create the perfect grid. Pivot tables provide a
dynamic way to look at summarized data in various views. When you use a pivot table, you have the ability to change
your analysis view just by dragging the data.

Pivot-table output can also be filtered, expanded, collapsed, or simply rearranged, and you can quickly find answers
to questions about the data by rotating or rearranging it. Pivot tables consist of any or all of the following objects:
Page, Row, Column, and Data. In Excel, you can easily generate a pivot table by selecting Data ►PivotTable from
the menu bar.

You can also generate pivot tables from the TableEditor using the following options:

• PTSOURCE_RANGE= option—specifies the range of the data to analyze.
• PIVOTPAGE= option—specifies a column page layout.
• PIVOTROW= option—specifies one or more columns of data for Pivot Row.
• PIVOTCOL= option—specifies one or more columns of data for Pivot Col.
• PIVOTDATA= option—specifies one or more columns of data for Pivot Data.
• PTDEST_RANGE= option—specifies a range on the existing worksheet to add the pivot table. By default it

is added on a separate sheet when this option is not specified.

28

A pivot table will be generated on a new worksheet named Pivot1 unless you specify the PTDEST_RANGE= option.
This option only changes the location of the worksheet in the current workbook to the range that you specify.

In the following example, column 3 (Age) is added to the column of the pivot table; columns 5 (Height) and 6
(Weight) are added to the data portion of the pivot table. The Obs column is also added to the page. A temporary
HTML file is generated in the work area and Excel opened with the table automatically when the page is loaded.

ods tagsets.tableeditor file="%sysfunc(getoption(WORK))\temp.html"
 options(auto_excel="yes"
 excel_orientation="landscape"
 sheet_name="Test"
 ptsource_range="a1:f19"
 pivotrow="3"
 pivotcol="4"
 pivotdata="5,6"
 pivotpage="1");

proc print data=sashelp.class;
 var name age sex height weight;
 title "Pivot tables";
run;
ods tagsets.tableeditor close;

EXCEL Graphs
The ability to export and generate graphs is a must for any data grid. You can generate graphs in Excel using options
of the TableEditor, which gives you access to all of the graphs that can be generated by Excel. Excel can generate a
large number of graph types, so you should be able to find the type you want. The following is a partial list of graph
types that are available in Excel:

• Bar
• Stacked Bar
• Histogram
• Stacked histogram
• Pie chart
• 3d pie chart
• Cylinder BarClustered

• Cylinder BarStacked
• 3d area
• 3d area stacked
• Dubble 3deffect
• Column clustered
• 3dcolumn
• Cone col

• 3d pie exploded
• Cone col clustered
• Doughnut
• Pyramid bar clustered
• Xyscatter
• Xyscatterlines
• LIne

 Display 34. Creating a Pivot Table

29

You generate graphs with the following required options:

• CHART_TYPE= option—specifies the type of Excel graph that you want to use
• CHART_SOURCE= option—is required in order to select the data range that you want to chart

Currently, only a few options are available for graphics, but additional functionality in this area is planned in the future.

ods tagsets.tableeditor file="temp.html"
 options(sheet_name="Graph test"
 chart_type="xyscatter"
 chart_title="Scatter Plot Example"
 chart_title_size="14"
 chart_xaxes_title="X axis title"
 chart_yaxes_title="Y axis title"
 chart_area_color="6"
 chart_plotarea_color="8"
 chart_source="d:d"
 excel_table_move="1"
 auto_format="color2");

proc print data=sashelp.class;
run;

ods tagsets.tableeditor close;

 Display 35. Generating a Graph of Your Data

EXCEL Macros
One of Excel’s most important features is the ability to create and use macros to modify the workbook or worksheet.
Macros are generated using Visual Basic for Applications (VBA). Just as you can modify objects with the TableEditor,
you can also modify them using Excel macros. You can use a macro for anything from adding a graph for the data
and setting up common options to adding a pivot table or chart. If the options provided for the TableEditor do not offer
the flexibility you need, you can use the TableEditor to execute the Excel macro of your choice. The macro is actually
executed when a table is exported to Excel.

Using the MACRO= option, you can point to a file that contains the macro you want to execute when the data is
exported. To keep from displaying the workbook or worksheet when the data is exported, you will want to hide the
window or sheet.

The following example points to a macro file that creates a pivot table from the data.

ods tagsets.tableeditor file="temp.html"
 options(macro="'c:\\temp\\samples\\filename.xls'!Pivot");

proc print data=sashelp.class;
 sum height weight;
run;

ods tagsets.tableeditor close;

30

Number Formats
When output is exported to Excel, the General format is used by default, just as it is used for other ODS destinations.
The General format is also used when you type numbers in an Excel cell if no other format is specified. You need to
be careful when you export to Excel because when the General format is used, numbers containing leading zeros are
removed. Other formatting issues, such as numbers being converted to scientific notation, can also occur.

To prevent numbers greater than 11 from being formatted in scientific notation, you can format a column as type
String by using the TAGATTR=”x.str” attribute.

Specifying an Excel format will guarantee that your output will display exactly as you have requested. You can add
Excel number formats by using the Microsoft specific CSS style property mso-number-format. You add this
property with the HTMLSTYLE= attribute.

The following example uses the String attribute for both the variables ACCOUNT and ZIP so that their values display
properly in Excel. The variable SALES uses an Excel custom format that causes the results to display to two decimal
places.

data one;
 input account zip sales;
cards;
790010023461 23220 10000
791123323451 30202 30000
792002020201 02030 40000
790202020201 02030 34567.44
;
run;

ods tagsets.tableeditor file="temp6.html" options(file_format="xls");

proc print data=one;
 var account zip / style(data)={tagattr="x:str nowrap"};
 var sales / style(data)={htmlstyle="mso-number-format:'#,###.00'"};
 format zip z5.;
run;

ods tagsets.tableeditor close;

EXPORTING DATA TO POWERPOINT
The TableEditor can also export Web pages into PowerPoint, just as it does for Excel. You can use the

 Display 36. Output Before Applying Formatting Display 37. Output After Applying Formatting

31

following options to export data to PowerPoint:

• POWERPOINT_SLIDE= option—specifies which Web pages, separated by commas, that you want
to import into separate slides. This requires each Web page be a separate file.

• POWERPOINT_TEMPLATE= option—specifies a template to define the overall appearance of the
PowerPoint slides.

• POWERPOINT_MASTER= option—enables you to add a title and subtitle. In the option, you must
separate the two text strings with an octothorp (#) symbol.

• POWERPOINT_SAVEAS= option—enables you to save your file as a native PowerPoint (.ppt) file.
• POWERPOINT_RUN= option—automatically runs your PowerPoint slides.

The following example uses all of these PowerPoint options. For this example, the HTML files were
generated using the MSOffice2K destination.

ods msoffice2k path="c:\temp" file="power.html" newfile=output;

proc print data=sashelp.class;
 title "Table 1";
run;

proc print data=sashelp.class;
 title "Table 2";
run;

ods msoffice2k close;

ods tagsets.tableeditor file="temp.html"
 options(powerpoint_master="Create That Perfect Data Grid#Chevell Parker"
 powerpoint_template="c:\\program files\\microsoft
 office\\templates\\presentation
 designs\\blends.pot"
 powerpoint_slides="c:\\temp\\power.html,
 c:\\temp\\power1.html"
 powerpoint_saveas="c:\\temp\\power.ppt"
 powerpoint_run="yes");

proc print data=sashelp.orsales(obs=5);
 run;

ods tagsets.tableeditor close;

 Display 38. PowerPoint Master Page Display 39. First PowerPoint Slide with the Table Data

ADDING EXAMPLES WITH STORED PROCESSES
Any of the examples within the document can be added while creating a stored process. All of the above examples
wrote to physical files, however It can be used with dynamic files as well. To use any of the options with a stored

32

process, the stored process would need to be registered as streaming if you would like this to be dynamic and
returned to the browser. If you are using the %STP macros, we will need to override the tagset name which will use
the HTML4 tagset by default with the _ODSDEST= macro variable. We will also need to add the options via the
_ODSOPTIONS macro variable.

%let _ODSDEST=tagsets.tableeditor;
%let _ODSOPTIONS=options(frozen_headers=”yes” banner_color_even=”teal”);
%let _ODSSTYLE=SASWEB;

%stpbegin;

Proc print data=sashelp.orsales;
Run;

%stpend;

EXPORTING PANELED OUTPUT
We can create paneled output in Excel by using the combination of the PANELCOLS= options and the
EMBEDDED_TABLES= option. Any number of tables can be paneled in Excel. Using the below example, only two
tables are paneled, however, you can panel as many as you like.

ods tagsets.tableeditor path="c:\temp" file="temp.xls"
options(panelcols="2"
 embedded_tables="yes"
 excel_zoom=”80”
 excel_frozen_headers=”3”);

proc print data=sashelp.class;
run;

proc print data=sashelp.class;
run;

ods tagsets.tableeditor close;

DISPLAY 40. PANELED EXCEL OUTPUT

33

CONCLUSION
This document demonstrates strategies that you can use to create an effective data grid using the SAS Output
Delivery System. These strategies include modifying styles, highlighting data, and exporting data. Hopefully, you will
be able to implement some of these features in your reports.

RESOURCES
Mead & Co. Ltd. (MeadCo). 1998-2003. "ScriptX printing: technical manual". Available at
www.meadroid.com/scriptx/docs/printdoc.htm.

Microsoft Corporation. 2008. "The Office XP Automation Help file is available for download". Available at
support.microsoft.com/kb/302460.

Parker, Chevell. 2006. "Now—That’s Your Style!!!!!" Proceedings of the Thirty-first Annual SAS Users Group
International Conference. Cary, NC: SAS Institute Inc. Available at www2.sas.com/proceedings/sugi31/091-31.pdf.

Parker, Chevell. 2008. “Base SAS: Creating a Data Grid Like VB.NET". Available at
support.sas.com/rnd/base/ods/odsmarkup/tableeditor/index.html. (This is the TableEditor download.)

SAS Institute Inc. 2008. "Base SAS: ODS Markup Resources". Available at
support.sas.com/rnd/base/ods/odsmarkup/.

ACKNOWLEDGEMENTS
I would like to thank Bari Lawhorn, Cynthia Zender, Susan Berry and Maggie Marcum for their contribution toward this
paper. I would also like to thank Eric Gebhart and the rest of the ODS development team for writing great software
that I used to create the TableEditor.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Chevell Parker
SAS Institute Inc.
SAS Circle Dr.
Cary, NC 27513
Chevell.Parker@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

