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ABSTRACT

Many procedures in SAS/STAT can be used to perform lo-
gistic regression analysis: CATMOD, GENMOD,LOGISTIC,
and PROBIT. Each procedure has special features that
make it useful for certain applications. For most applica-
tions, PROC LOGISTIC is the preferred choice. It fits binary
response or proportional odds models, provides various
model-selection methods to identify important prognostic
variables from a large number of candidate variables, and
computes regression diagnostic statistics. This tutorial dis-
cusses some of the problems users encountered when they
used the LOGISTIC procedure.

INTRODUCTION

PROC LOGISTIC can be used to analyze binary response
as well as ordinal response data.

Binary Response

The response, Y, of a subject can take one of two possible
values, denoted by 1 and 2 (for example, Y=1 if a disease is
present; otherwise Y=2). Let x = (x1; : : :; xk)

0 be the vector
of explanatory variables. The logistic regression model is
used to explain the effects of the explanatory variables on
the binary response.

logitfPr(Y = 1jx)g = log
�

Pr(Y = 1jx)
1� Pr(Y = 1jx)

�
= �0+x

0�

where �0 is the intercept parameter, and � is the vector of
slope parameters (Hosmer and Lameshow, 1989).

Ordinal Response

The response, Y, of a subject can take one of m ordinal
values, denoted by 1;2; : : :;m. PROC LOGISTIC fits the
following cumulative logit� model:

logitfPr(Y � rjx)g = �r + x0� 1 � r < m

where �1; : : :; �m�1 are (m-1) intercept parameters. This
model is also called the proportional odds model because
the odds of making response � r are exp( �0(x1 � x2))
times higher at x = x1 than at x = x2 (Agresti, 1990).

This ordinal model is especially appropriate if the ordinal
nature of the response is due to methodological limitations
in collecting the data in which the researchers are forced to

�logit of the cumulative probabilities

lump together and identify various portions of an otherwise
continuous variable. Let T be the underlying continuous
variable and suppose that

Y = r if 
r�1 < T � 
r

for some �1 = 
0 < 
1 < : : : < 
m = 1. Let x0 = 1.
Consider the regression model

T =

kX
i=0

�
�

i xi + e

where ��0 ; �
�

1 ; : : :; �
�

m�1 are regression parameters and e is
the error term with a logistic distribution F . Then

Pr(Y � r) = Pr(T � 
r) = F (
r �

kX
i=0

�
�

i xi)

or

logitfPr(Y � rjx)g = 
r �

kX
i=0

�
�

i xi

This is equivalent to the proportional odds model given
earlier.

INFINITE PARAMETERS

The term infinite parameters refers to the situation when the
likelihood equation does not have a finite solution (or in other
words, the maximum likelihood estimate does not exist).
The existence of maximum likelihood estimates for the
logistic model depends on the configurations of the sample
points in the observation space (Albert and Anderson, 1984,
and Santner and Duffy, 1985). There are three mutually
exclusive and exhaustive categories: complete separation,
quasicomplete separation, and overlap.

Consider a binary response model. Let Yi be the response
of the ith subject and let xi = (1; xi1; : : :; xik)0 be the vector
of explanatory variables (including the constant 1).

Complete Separation

There is a complete separation of data points if there exists
a vector b that correctly allocates all observations to their
response groups; that is,�

b0xi > 0 Yi = 1
b0xi < 0 Yi = 2

The maximum likelihood estimate does not exist. The
loglikelihood goes to 0 as iteration increases.
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The following example illustrates such situation. Consider
the data set DATA1 (Table 1) with 10 observations. Y is the
response and x1 and x2 are two explanatory variables.

Table 1. Complete Separation Data (DATA1)

Observation Y x1 x2

1 1 29 62
2 1 30 83
3 1 31 74
4 1 31 88
5 1 32 68
6 2 29 41
7 2 30 44
8 2 31 21
9 2 32 50

10 2 33 33

Figure 1 shows that the vector b = (6;�2;1)0 completely
separates the observations into their response groups; that
is, all observations of the same response lie on the same
side of the line x2 = 2x1 � 6.

Figure 1. Scatterplot of Sample Points in DATA1

The iterative history of fitting a logistic regression model to
the given data is shown in Output 1. Note that the negative
loglikehood decreases to 0 --- a perfect fit.

Quasicomplete Separation

If the data are not completely separated and there exists a
vector b such that�

b0xi � 0 Yi = 1
b0xi � 0 Yi = 2

with equality holds for at least one subject in each response
group, there is a quasicomplete separation. The maximum
likelihood estimate does not exist. The loglikelihood does
not diminish to 0 as in the case of complete separation, but
the dispersion matrix becomes unbound.

Output 1. Partial LOGISTIC Printout for DATA1

Maximum Likelihood Iterative Phase

Iter Step -2 Log L INTERCPT X1 X2

0 INITIAL 13.862944 0 0 0
1 IRLS 4.691312 -2.813220 -0.062042 0.083761
2 IRLS 2.280691 -2.773158 -0.187259 0.150942
3 IRLS 0.964403 -0.425345 -0.423977 0.238202
4 IRLS 0.361717 2.114730 -0.692202 0.339763
5 IRLS 0.133505 4.250789 -0.950753 0.443518
6 IRLS 0.049378 6.201510 -1.203505 0.547490
7 IRLS 0.018287 8.079876 -1.454499 0.651812
8 IRLS 0.006774 9.925139 -1.705284 0.756610
9 IRLS 0.002509 11.748893 -1.956323 0.861916

10 IRLS 0.000929 13.552650 -2.207666 0.967727
11 IRLS 0.000344 15.334133 -2.459215 1.074024
12 IRLS 0.000127 17.089516 -2.710811 1.180784
13 IRLS 0.000047030 18.814237 -2.962266 1.287983
14 IRLS 0.000017384 20.503310 -3.213375 1.395594
15 IRLS 0.000006423 22.151492 -3.463924 1.503590
16 IRLS 0.000002372 23.753408 -3.713693 1.611943
17 IRLS 0.000000876 25.303703 -3.962463 1.720626
18 IRLS 0.000000323 26.797224 -4.210021 1.829610
19 IRLS 0.000000119 28.229241 -4.456170 1.938869
20 IRLS 4.3956397E-8 29.595692 -4.700735 2.048377
21 IRLS 1.620409E-8 30.893457 -4.943572 2.158109
22 IRLS 5.9717453E-9 32.120599 -5.184576 2.268042
23 IRLS 2.2002107E-9 33.276570 -5.423689 2.378153
24 IRLS 8.10449E-10 34.362317 -5.660901 2.488421
25 IRLS 2.984679E-10 35.380281 -5.896252 2.598826

WARNING: Convergence was not attained in 25 iterations.
Iteration control is available with the MAXITER and the
CONVERGE options on the MODEL statement.

You can modify DATA1 to create a situation of quasicom-
plete separation, for instance, change x2 = 44 to x2 = 64
in observation 6. Let the modified data set be DATA2. With
b = (�4;�2;1)0, the equality holds for observations 1, 5,
and 7, and the rest of the observations are separated into
their response groups (Figure 2). It is easy to see that
there is no straight line that can completely separate the
two response groups.

Figure 2. Scatterplot of Sample Points in DATA2

The parameter estimates during the iterative phase are
displayed in Output 2 and the dispersion matrices for iter-
ations 0, 5, 10, 15, and 25 are shown in Output 3. The
log-likelihood approaches a nonzero constant . The seem-
ingly large variances of pseudoestimates are typical of a
quasicomplete separation of data.
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Output 2. Partial LOGISTIC Printout for DATA2

Maximum Likelihood Iterative Phase

Iter Step -2 Log L INTERCPT X1 X2

0 INITIAL 13.862944 0 0 0
1 IRLS 6.428374 -4.638506 0.003387 0.077640
2 IRLS 4.856439 -7.539932 -0.011060 0.131865
3 IRLS 4.190154 -9.533783 -0.066638 0.190242
4 IRLS 3.912968 -11.081432 -0.146953 0.252400
5 IRLS 3.800380 -11.670780 -0.265281 0.316912
6 IRLS 3.751126 -11.666819 -0.417929 0.388135
7 IRLS 3.727865 -11.697310 -0.597641 0.472639
8 IRLS 3.716764 -11.923095 -0.806371 0.573891
9 IRLS 3.711850 -12.316216 -1.038254 0.688687

10 IRLS 3.709877 -12.788230 -1.281868 0.810247
11 IRLS 3.709130 -13.282112 -1.529890 0.934224
12 IRLS 3.708852 -13.780722 -1.779320 1.058935
13 IRLS 3.708750 -14.280378 -2.029162 1.183855
14 IRLS 3.708712 -14.780288 -2.279118 1.308833
15 IRLS 3.708698 -15.280265 -2.529107 1.433827
16 IRLS 3.708693 -15.780258 -2.779104 1.558826
17 IRLS 3.708691 -16.280257 -3.029103 1.683825
18 IRLS 3.708691 -16.780256 -3.279103 1.808825
19 IRLS 3.708690 -17.280256 -3.529103 1.933825
20 IRLS 3.708690 -17.780256 -3.779103 2.058825
21 IRLS 3.708690 -18.280256 -4.029102 2.183825
22 IRLS 3.708690 -18.780255 -4.279102 2.308825
23 IRLS 3.708690 -19.280256 -4.529102 2.433825
24 IRLS 3.708690 -19.780257 -4.779103 2.558825
25 IRLS 3.708690 -20.280250 -5.029099 2.683824

WARNING: Convergence was not attained in 25 iterations.
Iteration control is available with the MAXITER and the
CONVERGE options on the MODEL statement.

Output 3. Dispersion Matrices on Selected Iterations
(DATA2)

Iter= 0 -2 Log L = 13.862944

Variable INTERCPT Z1 Z2 ESTIMATE

INTERCPT 269.05188212 -8.42405441 -0.157380245 0
Z1 -8.42405441 0.2673239797 0.0032615725 0
Z2 -0.157380245 0.0032615725 0.0009747228 0

Iter=5 -2 Log L = 3.800380

Variable INTERCPT Z1 Z2 ESTIMATE

INTERCPT 985.12006548 -29.47104673 -1.460819309 -11.670780
Z1 -29.47104673 1.4922999204 -0.242120428 -0.265281
Z2 -1.460819309 -0.242120428 0.1363093424 0.316912

Iter= 10 -2 Log L = 3.709877

Variable INTERCPT Z1 Z2 ESTIMATE

INTERCPT 1391.583624 169.160036 -100.9268654 -12.788230
Z1 169.160036 105.7305273 -52.20138038 -1.281868
Z2 -100.9268654 -52.20138038 26.043666498 0.810247

Iter= 15 -2 Log L = 3.708698

Variable INTERCPT Z1 Z2 ESTIMATE

INTERCPT 62940.299541 30943.762505 -15488.22021 -15.280265
Z1 30943.762505 15493.136539 -7745.900995 -2.529107
Z2 -15488.22021 -7745.900995 3872.8917604 1.433827

Iter=20 -2 Log L = 3.708690

Variable INTERCPT Z1 Z2 ESTIMATE

INTERCPT 9197536.1382 4598241.6822 -2299137.18 -17.780256
Z1 4598241.6822 2299142.0966 -1149570.381 -3.779103
Z2 -2299137.18 -1149570.381 574785.13177 2.058825

Iter=25 -2 Log L = 3.708690

Variable INTERCPT Z1 Z2 ESTIMATE

INTERCPT 502111231.75 251055089.49 -125527561.1 -20.280250
Z1 251055089.49 125527566 -62763782.33 -5.029099
Z2 -125527561.1 -62763782.33 31381891.107 2.683824

Overlap

If neither complete nor quasicomplete separation exists in
the sample points, there is an overlap of sample points.
The maximum likelihood estimate exists and is unique.

Figure 3. Scatterplot of Sample Points in DATA3

If you change x2 = 44 to x2 = 74 in observation 6 of
DATA1, the modified data set (DATA3) has overlapped
sample points. A scatterplot of the sample points in DATA3
is shown in Figure 3. For every straight line on the drawn on
the plot, there is always a sample point from each response
group on same side of the line. The maximum likelihood
estimates are finite (Output 4).

Output 4. PROC LOGISTIC Printout for DATA3

Maximum Likelihood Iterative Phase

Iter Step -2 Log L INTERCPT X1 X2

0 INITIAL 13.862944 0 0 0
1 IRLS 7.192759 -4.665775 0.011192 0.073238
2 IRLS 6.110729 -7.383116 0.010621 0.116549
3 IRLS 5.847544 -8.760124 -0.013538 0.148942
4 IRLS 5.816454 -9.185086 -0.033276 0.164399
5 IRLS 5.815754 -9.228343 -0.037848 0.167125
6 IRLS 5.815754 -9.228973 -0.037987 0.167197
7 IRLS 5.815754 -9.228973 -0.037987 0.167197

Last Change in -2 Log L: 2.282619E-13

Last Evaluation of Gradient

INTERCPT X1 X2

-1.109604E-7 -3.519319E-6 -3.163568E-6

Empirical Approach to Detect Separation

Complete separation and quasicomplete separation are
problems typical for small sample. Although complete sep-
aration can occur with any type of data, quasicomplete
separation is not likely with truly continuous data.

At the jth iteration, letbj be the vector of pseudoestimates.
The probability of correct allocation based on bj is given by8><

>:
exp(x0bj)

1+exp(x0bj)
Y = 1

1
1+exp(x0bj)

Y = 2
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� Stop at the iteration when the probability of correct
allocation is 1 for all observations. There is a com-
plete separation of data points. For DATA1, correct
allocation of all data points is achieved at iteration 13
(Table 2).

� At each iteration, look for the observation with the
largest probability of correct allocation. If this prob-
ability has become extremely close to 1, and any
diagonal element of the dispersion matrix becomes
very large, stop the iteration. It is very likely there is
a quasicomplete separation in the data set. Table 3
displays the maximum probability of correct alloca-
tion for DATA2. The dispersion matrix should be
examined after the 5th iteration.

Table 2. Percentage of Correct Allocation (DATA1)

% of Correct
j -2 Log L b

j

0 b
j

1 b
j

2 Allocation
0 13.8629 0.0000 0.00000 0.00000 0
1 4.6913 -2.8132 -0.06204 0.08376 0
2 2.2807 -2.7732 -0.18726 0.15094 0
3 0.9644 -0.4253 -0.42398 0.23820 0
4 0.3617 2.1147 -0.69220 0.33976 10
5 0.1335 4.2508 -0.95075 0.44352 40
6 0.0494 6.2015 -1.20351 0.54749 40
7 0.0183 8.0799 -1.45450 0.65181 40
8 0.0068 9.9251 -1.70528 0.75661 50
9 0.0025 11.7489 -1.95632 0.86192 50

10 0.0009 13.5527 -2.20767 0.96773 50
11 0.0003 15.3341 -2.45922 1.07402 60
12 0.0001 17.0895 -2.71081 1.18078 80
13 0.0000 18.8142 -2.96227 1.28798 100
14 0.0000 20.5033 -3.21338 1.39559 100
15 0.0000 22.1515 -3.46392 1.50359 100

Table 3. Maximum Probability of Correct Allocation
(DATA2)

Maximum
j -2 Log L b

j

0 b
j

1 b
j

2 Probability
0 13.8629 0.0000 0.00000 0.00000 0.50000
1 6.4284 -4.6385 0.00339 0.07764 0.87703
2 4.8564 -7.5399 -0.01106 0.13187 0.97217
3 4.1902 -9.5338 -0.06664 0.19024 0.99574
4 3.9130 -11.0814 -0.14695 0.25240 0.99950
5 3.8004 -11.6708 -0.26528 0.31691 0.99995
6 3.7511 -11.6668 -0.41793 0.38814 1.00000
7 3.7279 -11.6973 -0.59764 0.47264 1.00000
8 3.7168 -11.9231 -0.80637 0.57389 1.00000
9 3.7119 -12.3162 -1.03825 0.68869 1.00000

10 3.7099 -12.7882 -1.28187 0.81025 1.00000
11 3.7091 -13.2821 -1.52989 0.93422 1.00000
12 3.7089 -13.7807 -1.77932 1.05894 1.00000
13 3.7088 -14.2804 -2.02916 1.18386 1.00000
14 3.7087 -14.7803 -2.27912 1.30883 1.00000
15 3.7087 -15.2803 -2.52911 1.43383 1.00000

ORDERING OF THE BINARY RESPONSE LEV-
ELS

If the binary response is 0 and 1, PROC LOGISTIC, by
default, models the probability of 0 instead of 1; that is,

log
�

Pr(Y = 0jx)
Pr(Y = 1jx)

�
= �0 + x0�

This is consistent with the cumulative logit model, though
this may not always be desirable because 1 is often used
to denote the response of the event of interest. Consider
the following logistic regression example. Y is the response
variable with value 1 if the disease is present and 0 oth-
erwise. EXPOSURE is the only explanatory variable with
value 1 if the subject is exposed and 0 otherwise.

data disease;
input y exposure freq;
cards;
1 0 10
1 1 40
0 0 45
0 1 5
;
run;

proc logistic data=disease;
model y=exposure;
freq freq;
run;

Output 5. Logistic Regression of Disease on Exposure

Response Profile

Ordered
Value Y Count

1 0 50
2 1 50

Criteria for Assessing Model Fit

Intercept
Intercept and

Criterion Only Covariates Chi-Square for Covariates

AIC 140.629 87.550 .
SC 143.235 92.761 .
-2 LOG L 138.629 83.550 55.079 with 1 DF (p=0.0001)
Score . . 49.495 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr >
Variable DF Estimate Error Chi-Square Chi-Square

INTERCPT 1 1.5041 0.3496 18.5093 0.0001
EXPOSURE 1 -3.5835 0.5893 36.9839 0.0001

Analysis of Maximum
Likelihood Estimates

Standardized Odds
Variable Estimate Ratio

INTERCPT . 4.500
EXPOSURE -0.987849 0.028

Results of the analysis are displayed in Output 5. Since
the coefficient for EXPOSURE is negative, as EXPOSURE
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changes from 0 to 1, the probability of “no disease” de-
creases. This is a less direct way of saying that the
probability of “disease” increases with EXPOSURE.

Since

log

�
Pr(Y = 1jx)
Pr(Y = 0jx)

�
= �log

�
Pr(Y = 0jx)
Pr(Y = 1jx)

�

the probability of response 1 is given by

log
�

Pr(Y = 1jx)
1 � Pr(Y = 1jx)

�
= ��0 � x0�

That is, the regression coefficients for modeling the prob-
ability of 1 will have the same magnitude but opposite sign
as those of modeling the probability of 0. In order to have
a more direct interpretation of the regression coefficient,
it is desirable to model the probability of the event of in-
terest. In the LOGISTIC procedure, the response levels
are sorted according to the ORDER= option (the Response
Profiles table lists the ordering of the responses). PROC
LOGISTIC then models the probability of the response that
corresponds to the lower ordered value.

Note that the first observation in the given input data has
response 1. By using the option ORDER=DATA, the re-
sponse 1 will have ordered value 1 and response 0 will
have ordered value 2. As such the probability modeled is
the probability of response 1. There are several other ways
that you can reverse the response level ordering in the given
example (Schlotzhauer, 1993).

� The simplest method, available in Release 6.07
TS301 and later, uses the option DESCENDING.
Specify the DESCENDING option on the PROC LO-
GISTIC statement to reverse the ordering of Y.

proc logistic data=disease descending;
model y=exposure;
freq freq;
run;

� Assign a format to Y such that the first formatted
value (when the formatted values are put in sorted
order) corresponds to the presence of the disease.
For this example, Y=0 could be assigned the format-
ted value ’no disease’ and Y=1 could be assigned
the formatted value ’disease’.

proc format;
value disfmt 1=’disease’

0=’no disease’;
run;

proc logistic data=disease;
model y=exposure;
freq freq;
format y disfmt.;
run;

� Create a new variable to replace Y as the response
variable in the MODEL statement such that obser-
vation Y=1 takes on the smaller value of the new
variable.

data disease2;
set disease;
if y=0 then y1=’no disease’;
else ’disease’;
run;

proc logistic data=disease2;
model y1=exposure;
freq freq;
run;

� Create a new variable (N, for example) with constant
value 1 for each observation. Use the event/trial
MODEL statement syntax with Y as the event vari-
able and N as the trial variable.

data disease3;
set disease;
n=1;
run;

proc logistic data=disease;
model y/n=exposure;
freq freq;
run;

OTHER LOGISTIC REGRESSION APPLICA-
TIONS

There are many logistic regression models that are not
of the standard form as given earlier (Agresti, 1990, and
Strauss, 1992). For some of them you could “trick” PROC
LOGISTIC to do the estimation, for others you may have to
resort to other means. The following sections discuss some
of the models that are often inquired by SAS users.

Conditional Logistic Regression

Conditional logistic regression is useful in investigating the
relationship between an outcome and a set of prognostic
factors in a matched case-control studies, the outcome
being whether the subject is a case or a control. When
there is one case and one control in a matched set, the
matching is 1:1. 1:n matching refers to the situation when
there is one case and a varying number of controls in a
matched set. For the ith set, let ui the covariate vector for
the case and let vi1; : : :;vini be the covariate vectors for
the ni controls. The likelihood for the N matched sets is
given by

L(�) =
NY
i=1

exp(u0

i�)Pni

j=1 exp(v0

ij�)

For the 1-1 matching, the likelihood is reduced to

L(�) =
NY
i=1

exp(u0

i�)

exp(u0

i�) + exp(v0

i1�)

By dividing the numerator and the denominator by
exp(v0i1�), one obtains

L(�) =
NY
i=1

exp((ui � vi1)0�)
1 + exp((ui � vi1)0�)

Thus the likelihood is identical to that of the binary logis-
tic model with di = ui � vi1 as covariates, no intercept,
and a constant response. Therefore, you can “trick” PROC
LOGISTIC to perform the conditional logistic regression for
1-1 matching (See Example 5 of the LOGISTIC documenta-
tion). For 1:n matching, it is more convenient to use PROC
PHREG (see Example 3 of the PHREG documentation).
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Bradley-Terry Model for Paired Comparison

The Bradley-Terry Model is useful in establishing the over-
all ranking of n items through paired comparisons. For
instance, it is difficult for a panelist to rate all 9 brands of
beer at the same occasion; rather it is preferable to com-
pare the brands in a pairwise manner. For a given pair
of products, the panelist would state his preference after
tasting them at the same occasion. Let �1; �2; : : :; �n be re-
gression coefficients associated with the n items I1; : : :; In,
respectively. The probability that Ii is preferred to Ij is

�ij =
exp(�i)

exp(�i) + exp(�j)

=
exp(�i � �j)

1 + exp(�i � �j)

and, therefore, the likelihood function for the paired com-
parison model is

L(�1; : : :; �n) =
Y

(i;j)2A

�ij

where A is the sample collection of all the test pairs. For the
lth pair of comparison, if Ii is preferable to Ij, let the vector
dl = (dl1; : : :; dln) be such that

dlk =

(
1 k = i

�1 k = j

0 otherwise

The likelihood for the Bradley-Terry model is identical to the
binary logistic model with dl as covariates, no intercept,
and a constant response.

Multinormial Logit Choice Model

The multinormial logit model is useful in investigating con-
sumer choice behavior and has become increasingly pop-
ular in marketing research. Let C be a set of n choices,
denoted by f1;2; : : :; ng. A subject is present with alter-
natives in C and is asked to choose the most preferred
alternative. Let xi be a covariate vector associated with
the alternative i. The multinomial logit model for the choice
probabilities is given by

Pr(ijC) =
exp(x0

i�)Pn

j=1 exp(x0

j�)

where � is a vector of unknown regression parameters.
It is difficult to use PROC LOGISTIC to fit such a model.
Instead, by defining a proper time and a proper censoring
variable, you can trick PROC PHREG to provide the max-
imum likelihood estimates of the parameters. For details
on using PROC PHREG to analyse discrete choice stud-
ies, write to Warren Kuhfeld at SAS Institute Inc. (email:
saswfk@unx.sas.com) for a copy of the article “Multinormial
Logit, Discrete Choice Model.”
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