

Paper 292-2008

Managing large Data with SAS SPD Server®
Daniel Sargent, SAS Institute, Cary, NC

ABSTRACT
This paper provides the concepts behind demonstrations of how you can enhance query performance when you use the
SAS SPD Server to manage large data tables. This paper does not cover the main concepts for Dynamic Clusters or Parallel
Join. See white papers TW9593 and TW9594 for thorough discussions of the Dynamic Cluster and Parallel Join features.
This paper focuses on managing data within standard SAS® Scalable Performance Data Server® (SPD Server) tables, and
therefore Dynamic Cluster tables, to enhance data querying. There are three common types of queries for which data within a
table can be optimized: ordered processing, subsetting, and a hybrid of ordered processing and subsetting. This paper
presents two different ways of managing data at load time for a table that will enhance the performance of queries. One way
focuses on ordered processing and one way focuses on subsetting of rows. The third hybrid situation that is a combination of
both will be discussed.

INTRODUCTION
The SAS® Scalable Performance Data Server® (SPD Server) is designed to meet the storage and performance needs for
processing large amounts of SAS data. As the size of data increases, the demands for processing that data quickly increase,
and the storage architecture must fit the business needs. SPD Server is used at hundreds of sites worldwide and hosts some
of the largest known SAS data warehouses. SAS SPD Server provides high-performance SAS data storage to customers in
banking, credit-card, insurance, telecommunications, healthcare, pharmaceutical, transportation, and brokerage industries;
and to government agencies.

SERVER HARDWARE
The SAS SPD Server requires various tasks, processing, and I/O to occur simultaneously. The scalability of the hardware
plays a critical role in the overall performance of the server in answering queries. The demonstrations cover the behavior of
the SAS SPD Server on a UNIX server that has 8 gigabytes of RAM and four processors. The server has seven independent
file systems: one file system is used for indexes and metadata, one for temporary utility files, and five for actual data (rows of
the tables). No file system that is attached to the machine shares a disk drive with any other file system. The file systems are
set up using a 65536-byte stripe size for writing data.

Data tables
Data tables will be generated to demonstrate how you manage large tables for optimizing query performance using the
SAS SPD server. Depending on the purpose of the demonstration, the organization of the rows within the table will change.
For all demonstrations, the record layout that is used for the tables used remains the same. The SAS programs used to
generate the data tables for this paper are very similar to the sample job shipped with the SPD Server 4.4 or higher media
called: Dynamic_cluster_example2_job1.sas. The data tables simulate possible situations that involve data management for
subsetting, and they are ordered by processing that SAS SPD Server customers encounter in the field.

Loading of the tables and organization of the data for this paper focus on three columns in the tables. The first two columns,
BILLMTH & REGION, are columns that will be used to demonstrate optimizing the data for subsetting. The record key for the
table, which has a unique value for every row, is the combination of the columns BILLMTH and CARDHOLDER. Each row in
the table can be uniquely identified by BILLMTH and CARDHOLDER. In the tables, every row is considered a summary
record for all transactions from a CARDHOLDER during a given month. Although each unique row in the table is regarded as
a summary record, there is no additional column that represents the number of transaction or detail rows from which the
summary row was created. To be more specific, the column BILLMTH is a date column in which the values contained therein
are the first day of each calendar month. A table that represents the calendar year of 2004 will contain 12 dates that all begin
on the first day of each month in the year 2004. The value for the month of January will be 01JAN2004, for February the
value in the column will be 01FEB2004, continuing through 01DEC2004. The column REGION has four specific character
values (N, S, E, W) representing north, south, east, and west regions.

The column CARDHOLDER contains a set of unique values where each value represents an individual CARDHOLDER. If a
data table is generated that contains 12 months of data, then it will contain 12 rows for each unique CARDHOLDER. For
example take the CARDHOLDER number 123456, a table with 12 months of data will contain 12 rows for CARDHOLDER
123456, with one row for each month. Because the table is for demonstration, the data will not mimic real customer cases.
For example, every month in each table will contain a row for each CARDHOLDER, even though in a real customer situation
there might often be months where a CARDHOLDER will not have any transactions and therefore would not have a summary
record. Also in the real world, new CARDHOLDERs and old CARDHOLDERs are issued and dropped every month. The two
columns BILLMTH and CARDHOLDER will be used to demonstrate the performance of sorting and will also be used for joins
or ordered by processing.

The size of the tables that are used for the demonstrations is adjusted for the type of demonstration and the hardware being
used. The column REGION within the tables has been converted to character from a numeric format and the number of
regions has been reduced to four. A fourth change to the program includes, for each data table, a column that generates a
random number that is stored in a column called RANDOM_DIST. This column will be used to randomly order the tables to
show the effects that unordered tables can have on performance.

HOW TABLE ROWS ARE WRITTEN TO DISK
An important factor that influences the performance of queries is the organization of the data within the table. The goal of this
paper is to enable the reader to better understand how to organize data within a table to optimize the performance for two
types of queries. The first type of query is a subsetting query and the second type is one that requires ordered processing of
rows. The organization of the rows in the table affects the amount of work that is required to satisfy different types of query
requests. You therefore need to understand the structure of data partitions and file systems.

The first item that you need to understand is the table component called a data partition file or dpf. A data partition is a file
structure that stores rows for a table. Depending on the size of the table there can be one to many data partitions. Within the
data partition file, there are two additional structures. The first additional structure is an I/O block; this structure is used to
buffer rows for compression, and it enables direct access to rows in a compressed table. The I/O block is the structure within
a data partition that is compressed. The uncompressed size of an I/O Block is around 32k bytes, depending on the width of
the rows. For compressed tables, the I/O block contains the second structure (the table rows).

For uncompressed tables, the unit of data that is passed to the OS for writing is controlled by a macro variable called
NETPACKSIZE. NETPACKSIZE is mainly used to control the amount of data that gets transferred from the client to the server
and vice versa. Like the I/O block, the NETPACKSIZE is around 32k, depending on the width of the row. The I/O block and a
data block that is approximately the size of the NETPACKSIZE setting are passed to the OS for writing. When reading rows of
a table, these are the units that are read. In this paper we refer to these units of I/O blocks or NETPACKSIZE of data as a
READ UNIT. This will be helpful later when we discuss data optimization.

The second item that needs to be better understood is the file system to which the data will be written. Each file system
typically consists of a set of disks that are combined to provide a hardware structure that has redundancy in case of a disk
failure. This redundancy is called a Redundant Array of Independent Disks (RAID). The disk structure contains a sub-
structure that is called a disk stripe, which is a section of disk on which data can be written. For most sites that use the
SAS SPD Server, the disk stripe size will be 64k or higher. It is to the disk stripes that the I/O blocks are physically written.
The file systems on the test server are set up with a stripe size of 128k, which means that when I/O blocks for a data table
are written to disk, each stripe can contain four I/O blocks.

For a more complete discussion about data partitions, please see the white paper “Partitioning of SAS® Scalable Performance
Data Server® Tables.”

MANAGING DATA INTRODUCTION
There are two primary data management concepts presented in this section. While these two concepts do not cover every
type of possible data management concept, they are the two most important concepts because they can improve
performance for a large majority of queries. The first primary concept is optimizing data for ordered processing. Ordered
processing includes any type of table-processing step that requires the data to be in a specific order to complete the task.

This can include processing of a table within SAS code, such as a DATA step with BY clause or SQL Joins between two
tables.

The second primary concept is optimizing data for subsetting based on values in columns. This type of processing occurs for
WHERE clauses that are used to select subsets from a data table. There is a third type of processing situation, which is a
cross of ordered and subsetting, or vice versa. These situations are cases where the processing requires both subsetting and
ordering of the data to occur to complete the task. A later section will discuss combining the two concepts of optimizing data
for both subsetting and ordered processing.

Benefit of Ordering Column Values
Tables are processed in different ways to satisfy the queries from users. Very often a large percentage of the queries will
follow a similar pattern for reading and processing a data table that requires identical ordering of the data of the table for all of
the queries. One way to enhance the performance of the queries is to load the data into the table in the order that the queries
need for ordered processing. This section deals with these cases in which data in tables needs to be ordered and the ways
that a table can be managed to enhance the performance of the queries. Three examples of common types of processing in
which ordering data is necessary for tables to be processes are joining to another table, processing of a DATA step, and
summarizing a table.

It is a common practice for customer sites to pre-order a data table when many queries like the ones above will require
ordered reading of the data within the table. This section uses the PROC SORT procedure on a single table to provide a
demonstration of the cost/benefit of pre-ordering an example data table for ordered read access of the CARDHOLDER column
as described earlier in this paper. The run time and CPU utilization will be collected during the processing of the table to
demonstrate the benefits that can be achieved when the CARDHOLDER column is pre-ordered within the table.

Three data tables were generated, each containing an identical set of 134,217,732 million rows and a table width of 256 bytes.
To demonstrate the benefit of how per-ordering of a column affects performance, the order of values in either the
CARDHOLDER column or the SORTEDBY table attribute, or both, differs for each table. The SORTEDBY table attribute is a
set of metadata that is stored within the data table. When the table is being read, this attribute allows the software to determine
that the table is already correctly ordered, and to proceed to the phase that directly reads the table, without having to
physically order the data.

Sometimes pre-ordering a table cannot be optimally achieved. It might be impossible to ideally optimize a data table because
the size of a data table or the need to subset a data table could prohibit the ability to optimally organize the data. If, however,
a partial ordering of a table can be done, there can still be significant benefits. This second table provides the benchmark
between optimal and worst case.

The first of the three tables provides optimal performance for a query that requires the CARDHOLDER column to be ordered.
For this table the CARDHOLDER column is pre-ordered and the SORTEDBY table attributes have been set in the metadata.
By pre-ordering the column and having the SORTEDBY attributes set when the table is opened for an ordered read by
CARDHOLDER, the software will check the metadata, determine that the data table is already ordered, determine that the
order complies with the order requested by the query, and perform a sequential read of the table. The physical process of
sorting the data table will be by passed. Sorting a table can be costly. Eliminating this process can greatly improve
performance.

The main consideration for loading a table in pre-sorted order is how often that table requires ordered processing compared to
other types of processing. Our demonstration table that uses the CARDHOLDER column is a good example of a table column
for pre-ordered loading. If this data table is likely to require ordered processing 250 times during a given week, then pre-
ordering the CARDHOLDER column and using the SORTEDBY metadata attributes will allow all 250 jobs that require ordered
processing by CARDHOLDER to simply read the table sequentially.

When making a choice to manage data in one way or another, you should perform a cost/benefits analysis between possible
options. The second table is loaded in a very similar fashion to the first table: the CARDHOLDER column is ordered in the
manner that the job will need to read the data table, but the SORTEDBY table attributes are not used. This variation allows us

to measure the cost of not having the metadata set. For this case the data table remains ordered, but the software is not
provided that information, which causes the software to behave as if the table was not ordered. Using this second table and
capturing the run time and CPU used for ordering the table provides a best-case situation for sorting a table. When a sort
occurs on a data table that is already ordered or nearly ordered in the manner it needs to be, much less work is required than
if the table had not been ordered. The type of work by passed includes moving data within memory, and the number of
compares required to order the data.

The third table allows us to measure the cost of ordering a table when the rows are not already in correct order. This case is
less desirable because more work must be performed—moving data and doing compares of the key when ordering the data.
This third table contains the same data as the other two tables, but the values in the CARDHOLDER column are randomly
distributed throughout the table. The three tables are all created with a column that contains a generated random number.
After an initial load of the third table, the column with the random numbers was used to reorder the table randomly and make
the CARDHOLDER column randomly distributed.

The test job for measuring the cost of processing the tables is the PROC SORT procedure, which uses the metadata of the
table to determine if the table is already ordered. If the table is not ordered, the PROC SORT procedure performs a sort of the
table. The general syntax of the code is shown below:

PROC SORT Data=bigdata.table_in Out=bigdata.table_out ;
 By CARDHOLDER ;
Run ;

The table below shows the runtime, the average CPU percentage used during the process, and the total CPU utilization factor
that was computed using the runtime and average CPU used to process the table. The total CPU utilization factor is a
computation that allows the comparison of CPU used between the three jobs. It is computed by taking the average percentage
of CPU used and dividing it by 25, which is the percentage of total processing power that each CPU has on the server. The
number computed is then multiplied by the runtime in seconds. For example, the average CPU utilization of 66.53 divided by
25 is 2.66, which indicates that an average of 2.66 CPUs was used during the running.

Table processed Runtime Average CPU utilization Total CPU Utilization factor (computed)
First Table (ideally optimized) N/A 66.53 percent 153,020 units
Second Table 76% 82.20 percent 332,100 units
Third Table (Less desirable) 219% 80.82 percent 596,480 units

Looking at the table above, we can see the importance of managing the order of values in a column. Comparing the
performance of reading the first table to the second table shows the importance of using the SORTEDBY table attribute when
possible. Comparing the sort performance of the second table to the third table demonstrates how partial ordering of a table
can impact performance when sorts are required.

Of the three cases, the best processing time for reading the table was with the first table. This was expected because the
PROC SORT procedure detected that the table was already ordered and performed a sequential read of the table. The
second best was the second table, which was also expected because the data was organized internally to improve sort
performance. This second table shows the best case possible for partial ordering of a table. The sorting of the second table
compared to the first table demonstrates the minimum cost of performing a sort on a table. The runtimes and CPU utilization
to process the third table shows the worst case for sorting a table. When you compare the run time and CPU with the second
table, it becomes clear how even partial ordering of a column such as CARDHOLDER can impact performance.

The numbers presented for runtimes are the percentage increases of time needed to complete the sort compared, to the
idealized optimized and are not the actual runtimes used to sort the tables. The numbers used for the average CPU utilization
are actual percentages of CPU utilized during the sort of the tables. The numbers can vary depending on many factors that
might not be reproducible on other servers. The numbers are dependent on the data used, I/O configuration, and the CPU
speed of the server.

MANAGING DATA FOR SUBSETTING QUERIES
We saw in the last section that the data in a table can be optimized for ordered processing. The same can be true for
subsetting rows from a table. This section discusses and demonstrates how to manage a data table for optimized subsetting
queries, with the goal of reducing runtime and CPU resources used.

The first section will measure four cases for subsetting rows from four data tables with identical sets of rows, but which are
organized differently. For this first case the query will select all rows from a table based on a single value in a table column.
The column used is the REGION column and the value is N for north, which will select approximately 25 percent of the rows.
The first query uses a method called a full-table scan to subset the table. This full-table scan will provide a baseline from
which to measure different cases. It is a baseline because it is the default method when no other method is possible. For a
full-table scan, the subsetting of rows from a table is accomplished by having the software read all rows in the table and
manually checking them with the sub-setting criteria. No indexes are used for this type of check, and the organization of the
rows does not make any difference in the cost to subset the rows.

A second method that you can use to subset rows from a table is an indexed approach, in which the software reads as little as
possible of the table and processes only the rows that meet the selection criteria. In this case, the organization of the data in
the table can affect performance of subsetting rows, and two tables are used. One of the indexed tables will not be organized
for subsetting. The values for the region column are dispersed throughout data table. For the second data table the values
are organized for subsetting. All rows for each value in the REGION column are adjacent to each other. This reduces the
number or READ UNITS that the rows to be selected will be on. A fourth case is included where the query is run against a
cluster table that uses the MINMAXVARLIST option on the REGION column. The cluster table is a data-management feature
that can also be used to organize a data table for optimal subsetting. The cluster table has four members where each member
contains all of the rows for a specific region value. For example one cluster member will contain the rows for the N or north
region.

Using an index for subsetting is not always better then full-table scans. There are several reasons why subsetting with an
index may not be more effective. The first reason is the number of rows. Using an index is not cost free: the index must be
read, a list of rows to select must be built, and then the rows must be read from the table. The total cost of building the list of
rows to select from the index and then using that list to read the rows from the table increases as the number of rows
increases. There is more index work to create a longer list of rows and more rows to read. The second reason is that the data
might be poorly organized for using an index to select the rows. Remember that the amount of data that must be read from
the disk is approximately the physical size of an I/O block or a NETPACKSIZE. We called this amount of data a READ UNIT.
Consider this simplified example: a table has 100 million rows, and it has 1 million READ UNITS. If the subsetting criteria
were to select about 1 million rows from the table, and each READ UNIT contained at least one row that matched the
subsetting criteria, then every READ UNIT and the entire table would have to be physically read.

That simple example provides an important insight to organizing a data table for optimized subsetting. Our example has 100
million rows and 1 million READ UNITS from which we can calculate that each READ UNIT contains 100 rows. It also means
we can calculate the minimum possible number of READ UNITS that are needed to store the 1 million rows that a query
subsets. If the rows are organized to fit on the minimum number of possible READ UNITS and an index is used, that index will
allow the software direct access to the 10,000 READ UNITS that will contain all of the data rows. Compared to reading the
entire table, this reduces the amount of data physically read from disk to one percent, which greatly impacts the performance.

The three most common types of subsetting criteria that are used to subset a table are demographic, geographic, and time-
based. Demographic subsetting of tables involves columns that contain information on a person’s GENDER, AGE, and
INCOME. Geographic subsetting is typically done on columns with information such as COUNTRY, STATE, ZIP CODE, and
REGION. Time-based subsetting is typically done on columns containing information such as YEAR, MONTH, and
QUARTER. Managing a table for subsetting can be a balancing act between the different queries that will subset data from
the table. There could be a set of queries that uses just time criteria to subset rows. Other queries might be based on
geographic columns. Queries could subset rows based on demographic columns. Still other queries might subset data from
the table using any combination of columns.

While it would be wonderful if a data table could be optimized for every type of subsetting query, which is not really possible.
Let’s use the last example with the 100 million-row table and now consider three queries that all sub-set 1 million rows. One
query subsets rows based on time, the other on age, and the third on state. Only if the three queries were to request the
identical set of rows would all three queries be optimized. Some natural optimization does occur where a data table is
optimized for subsetting by state and in so doing; queries that select based on zip codes also receive some optimization.
Optimizing a data table for one query often prevents it from being ideally optimized for other queries. A good example might be
optimizing a data table for time, which would disperse the rows for income class across all time periods.

It is possible to layer optimization of a data table. Consider a column billing month and gender. When optimizing the data
table, you can choose to ideally optimize it for billing month. Within billing month, the data table can be optimized for a column
such as gender. The layering of optimization can often be used several layers deep. Often, with each additional layer, less
optimization occurs because the data at the lower levels of the layers is more dispersed.

On our demonstration table the columns REGION and BILLMTH are used to demonstrate how data can be organized to
optimize it for queries that will subset data that is based on just one or both of those columns. The algorithms used to subset
data are often dependent on the I/O ability of the hardware because they are able to read the table and perform the subsetting
in parallel. Within the table there are 12 distinct values in the column BILLMTH and four distinct values within the column
REGION. As I explained in a previous paragraph, if we can minimize the number of reads performed by organizing the rows
for subsetting data onto fewer read units, then we can boost performance.

Three tables will be created for the first demonstration, which will select one of four regions. The query that is run against the
three tables will select all of the rows for one of the four region values that will subset approximately 25 percent of the rows
from the table. The first table will have no indexes, and it will be used to perform a full-table scan. The second table will be
ideally optimized for selecting rows based on the region column; and for the last table, the values in the region column will be
randomly distributed using the same technique of sorting the table by a column containing a random number. Earlier in this
paper, I explained how the data rows of a table are written to disk. We need to revisit this because it plays a huge part when
optimizing a data table for subsetting. Consider the two data tables we are using for indexed subsetting: for one table, the
number of READ UNITS is minimized; for the second table, every READ UNIT contains rows that will have the region on
which the subsetting is being performed.

Below is an example of the query that is used to subset a region from the tables:

data bigdata.table_out ;
 set bigdata.sales_history_2004 ;
 where region = "N" ;
run ;

The table below shows the runtime, the average CPU percentage that was used during the process, and the total CPU
utilization factor that was computed using the runtime and average CPU that was used to run the task to process the table.
The total CPU utilization factor is a computation that allows you to compare CPU used between the three jobs. It is computed
by taking the average percentage of CPU used dividing it by 25, which is the percentage of total processing power that each
CPU has on the server. The computed number is then multiplied by the runtime in seconds. For example, the average CPU
utilization of 51 percent divided by 25 is 2.04. This number indicates that, on average, 2.04 CPUs were used during the
running of the sub-setting process.

Table processed Runtime Average CPU utilization Total CPU Utilization factor

(computed)
Full-table scan 2 Min 30 seconds 51 percent 31,160 units
Optimized for indexed subsetting 2 min 33 seconds 63 percent 35,400 units
Random distribution of subset rows 2 min 40 seconds 79 percent 51,000 units
Clustered table 2 Min 10 seconds 64 percent 33,512 units

We can see from the above table that the three queries, full-table scan, optimized for subsetting with indexes, and the
clustered table, were very similar in terms of the CPU used. Out of these three tables, the best CPU time was the full-table
scan, and the fastest run time was on the clustered table. Out of the 4 tables used clearly the worst case was the indexed
table on which had no optimization for the data. The query to subset rows from this table used more CPU than was needed to
subset rows from the other three tables. These demonstrations show that managing a data table as we have described earlier
to optimize it for a specific subsetting pattern will affect performance. Please note that the full-table scan was not more costly
than the optimized table and cluster table. As was stated earlier, use of an index does have the overhead cost of building the
list of rows to select, which in this case, where 25 percent of the rows were selected, balanced the cost of reading the entire
table and checking every row.

We now perform the same kind of test with a query that has two where predicates. This second query selects a smaller
subset from the table. This query uses the subset based on REGION, but it also uses the BILLMTH column to further subset
the table by selecting only rows that are in the first quarter of a year. The demonstration uses the same four tables in the
earlier demonstrations, except a second index has been added on BILLMTH for the indexed cases. Also for the ideally
organized table, the data table has layered subsetting organization, which includes the first REGION as the primary layer and
BILLMTH as the secondary layer. A second cluster table is also used. It has 48 member tables, and each member table
matches one unique combination of REGION and BILLMTH. For example, one member contains only rows where REGION is
equal to N and the BILLMTH is JANUARY 01, 2004. The total percent of rows for which subsetting will be performed is
approximately 6.25 percent. The query is below:

Data junk ;
 set &domain..sales_history_2004_subset_test1 ;
 where region = "N"
 and billmth between '01jan2004'd and '01mar2004'd ;
run ;

The table below shows the runtime, the average CPU percentage that was used during the process, and the total CPU
utilization factor that was computed using the runtime and average CPU that was used to run the task to process the table.

Table processed Runtime Average CPU utilization Total CPU Utilization factor

(computed)
Full-table scan 1 Min 49 seconds 51 percent 23,440 units
Optimized for indexed subsetting 33 seconds 66 percent 9,300 units
Random distribution of subset rows 1 min 55 seconds 62 percent 28,900 units
Clustered by REGION 32 seconds 64 percent 9,000 units
Clustered by REGION & BILLMTH 32 seconds 61 percent 8,540 units

OPTIMIZING A DATA TABLE FOR BOTH SUBSETTING AND ORDERED PROCESSING
The choices for optimizing a data table for subsetting or for ordered processing are often limited by the size of the table.
Tables can be so large that they cannot be ideally optimized for ordered processing. From the demonstrations, we know that
even less than ideal optimization for ordered processing helps reduce the work that is required for sorting a table. We also
saw that a data table can be ideally optimized for subsetting of rows. Optimization for subsetting of data can be achieved
across multiple columns, but with each additional column, you can expect to see less benefit.

If the type of optimization possible is not limited by the size of the data table, then it is possible to choose a type of optimization
and apply it to the table. The benchmarks from this paper can serve as a guide to determine which type of optimization to
apply to a data table. The goal is to minimize the work that is required to satisfy queries. If the types of queries that will read
the table are weighted more heavily toward ordered processing than optimizing, you might find a better path to take. In
making the choice, it is important to understand by which values the data in a table will be processed. If the columns that will
be used for ordered processing are also the record key, then it is very likely that choosing to optimize for ordered processing

will mean no optimization for subsetting will be possible. Often, ordering a data table by the record key will also organize the
columns that are used for subsetting the data table as if they were randomly distributed.

Getting the Most Benefit Possible with SAS SPD Server
The SAS SPD Server has a feature called Dynamic Clusters. The feature was designed to allow customers to manage very
large tables that are difficult or impossible to manage with standard tables. For example there are customers who are using
this feature to manage tables that have billions of rows, and the tables are close to a terabyte in size. The resources and
process time required to keep a multi-billion-row, terabyte-sized table ideally optimized for ordered processing make it
prohibitive. The issues that customers face with large-table optimizations have been addressed within the Dynamic Cluster
feature to allow better management of large tables for the different kinds of processing required. The feature can be used to
create very good cross optimization of data for both ordered processing and subsetting of rows from the table. This section
explains how.

Earlier in the paper, we used the Dynamic Cluster feature to manage a table that was optimized for subsetting. This was done
by creating a table that contained data for a specific value in the REGION column. One table contained all of the rows where
the column value was N for north. The same was done for the other three values of S, E, and W. These four individual tables
can be ordered by the CARDHOLDER column, which is the column that is used for ordered processing of the table. As we
know from the numbers presented earlier, this greatly reduces the amount of work that is required by a sort to order the data.
But having to sort the table is not the optimal situation for processing. An important feature for a Dynamic Cluster is the ability
to recognize that the individual member tables are ordered and to use that order when it matches the requirement of a query.
The software has the ability to recognize a set of cases where it is beneficial to interleave the rows across member tables of a
cluster and to feed them to a query that is requesting the rows for ordered processing. For the software to do this, the order of
the individual members must match the order that is requested by the query.

To demonstrate the benefit of Dynamic Cluster members being interleaved on the fly, three tables with identical rows and
ordering of the rows were created and the PROC SORT procedure was used to read the tables. The first table is the same
table that was used to demonstrate performance when the full table is ideally organized. The numbers that are used are the
same numbers that were used in an earlier section of the paper. This table is presented to provide a baseline for
comparisons. The second table is a Dynamic cluster with four members, each member is sorted by CARDHOLDER, and the
SORTEDBY table option is used. This causes the software to perform the CLUSTER BY OPTIMAZATION, which will
interleave the rows of the four member tables rather than perform a physical sort. The third table is a Dynamic Cluster table
that is identical to the second table, but the SORTEDBY table option was not used. This causes a physical sort to be
performed on the entire cluster.

The table below shows the benefit of ordering individual members as it compares two jobs, one where the table must be
sorted and one where the rows from the members are interleaved. The table below shows the runtime, the average CPU
percentage that was used during the process, and the total CPU utilization factor that was computed using the runtime and
average CPU that was used to run the task to process the table. The total CPU utilization factor is a computation that allows
you to compare the CPU that was used for each of the three jobs. It is computed by taking the average percentage of CPU
used and dividing it by 25, which is the percentage of total processing power that each CPU has on the server. The computed
number is then multiplied by the runtime in seconds. For example, the average CPU utilization of 66.53 divided by 25 is 2.66.
This number indicates that an average of 2.66 CPUs was used during the running.

Table processed Runtime Average CPU utilization Total CPU Utilization factor (computed)
First Table (ideally optimized) 9 Min 30 seconds 66.53 percent 153,020 units
Second Table 10 min 40 seconds 74.57 percent 192,400 units
Third Table (no SORTEDBY) 26 min 19 seconds 57.65 percent 368,980 units

We can see from the above table that although the Dynamic Cluster BY OPTIMAZATION is not ideal, there is a tremendous
benefit to using this feature. The run time and cost of interleaving the rows is not dramatically higher than the ideal optimized
table when it is compared to the table that is not using this feature. The second table had only four members. If this table
contained the same number of rows, but they were divided across more members, the work and therefore the time required to

interleave the rows would increase. This is because the interleave process must perform more comparisons between the
member tables as it selects the next row to pass on for ordered processing.

Another helpful aspect with Dynamic Clusters is that you can manually specify a sort order for an entire cluster. For example,
a cluster could have two tables that are both ordered by a column; but one table contains values 1 through 10 for the ordered
column, and the second table contained values 11 through 20. When the cluster is created; the SORTEDBY table option can
be used on the cluster to indicate that the entire cluster has an order. It is important to know that when creating the cluster,
the first member that is specified in the PROC SPDO CREATE CLUSTER command must contain the table with rows 1
through 10, and the second table must be the one that contains the rows ordered 11 through 20. Then the SORTEDBY table
option can be used to indicate the entire table is ordered.

SUMMARY
What this paper shows is that there are ways to organize data tables to benefit performance. When managing large amounts
of data you should consider the types of queries that will be using the data in the tables and understand the different
approaches to improving performance. This paper provides the most basic methods of managing large data for the most
common types of queries.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Daniel Sargent
SAS Institute
SAS Campus Drive
Cary, NC 27513
Work Phone: 919-531-6477
E-mail: Daniel.Sargent@SAS.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

