
1

Paper 6007-2020

Expanding SAS® Grid Manager for Platform:

Lessons from the Field

Bill McMillan, IBM United Kingdom; Qingda Wang, Kinson Chik, IBM Canada

ABSTRACT

SAS Grid Manager provides a powerful multi-tenant computing environment that enables high

availability and accelerates processing for analytical workloads.

“SAS Grid Manager for Platform” and “Platform Suite for SAS” are built upon IBM’s LSF family

of products. In addition to powering the vast majority of SAS Grid deployments, LSF manages

the Summit (#1), Sierra (#2), Lassen (#10) and Pangea3 (#11) systems on the Top5001 list,

and the compute grids of many of the world’s largest semiconductor, automotive, aerospace

and financial institutions.

These large-scale deployments may seem worlds away from your typical SAS Grid, but they

use the same underlying LSF technologies and capabilities which can be leveraged in your

SAS Grid environment today to increase user productivity and deliver better business

outcomes.

This paper will examine four key areas where we have helped SAS Grid users and others to

derive increased business value by leveraging additional LSF functionality. Namely:

• Enhanced Scheduling and tools for User Productivity

• Accelerated Computing with GPUs

• Leveraging Containers and Kubernetes

• Hybrid Cloud for on-demand burst capacity with data management.

These will be illustrated using client examples.

INTRODUCTION

Analytics is no longer the remit of a handful of data analysts providing mystical insight into

an organizations data. Analytics is everywhere, empowering the whole enterprise. Everyone

wants access, and many are trying to use new methods, such as AI/ML/DL, to derive greater

value and provide greater insight from our oceans of data.

SAS provides many excellent applications and solutions to help on this endeavor, but as with

the volumes of data rapidly growing, so are the number of different tools and potential

applications. In a recent survey, it was found that the average data analyst uses 7

[KDNuggets2018] different tools.

1 https://www.top500.org/list/2019/11/

2

From an IT perspective this brings many new challenges – not only in having to support these

applications, but in delivering suitable infrastructure in a timely manner and handling the

additional data growth and governance with supplying this data to the infrastructure where

these applications reside.

While SAS Grid Manager for Platform is restricted to running just SAS applications, LSF, itself,

typically manages very diverse and heterogeneous environments for many of the world’s

largest semiconductor, health care and life sciences, automotive, aerospace and financial

institutions. These large-scale deployments may seem worlds away from your typical SAS

Grid, but they use the same underlying LSF technologies and capabilities which can be

leveraged in your SAS Grid Manager for Platform environment today.

The one attribute that all these environments have (apart from running LSF) is that they are

not dedicated to a single application. They are multi-tenant supporting a wide range of

applications, application frameworks and users.

To summarize, our work with SAS over the years has led to many SAS Grids being deployed.

As new tools and workloads appear, new ways to manage and consume core IT emerge, and

organizations desire to leverage existing investments to handle change and growth, our

commitment to evolve alongside should be apparent in this paper through what clients ask

us to help with and how we provide capability in these areas to drive efficiency – of use, of

management, and [of course] performance.

Thus, the aim of this paper is to provide you with insight into how other organizations are

leveraging LSF technologies for scheduling, GPUs, Cloud, Containers and Kubernetes for both

SAS and non-SAS workloads, thereby delivering additional IT agility and business value.

SAS WORKLOAD ORCHESTRATOR

SAS 9.4M6 introduced SAS Workload Orchestrator as an alternative solution to what was

renamed SAS Grid Manager for Platform. LSF2, like SAS, consists of multiple components.

Haig2019 presents a comparison of SAS Workload Orchestrator and LSF. However, it only

compares the LSF components that SAS includes to be used, and not the whole LSF Suite.

For example:

• REST-API: The mobile application, for example, communicates with LSF via a RESTful

API which is generally available. There is also a version of the traditional LSF command

line that uses the RESTful API for communication.

• Pluggable Scheduling Logic: The core design of the LSF scheduler is based on pluggable

scheduling modules. This translates to not only can you write your own scheduling

logic; you can extend or over-ride parts of existing scheduling modules.

• Type of Jobs that can be run: There are no inherent restrictions on the workload LSF

can run – if you can launch if from a command line you can run it in LSF. In addition

to the command line, there is a full Python API.

• Embedded GUI: Multiple GUI’s are available tailored to user personae. For example,

Welch2019 illustrates LSF’s Application Center GUI running containerized Jupyter

Notebooks, MPI, TensorFlow, TensorBoard, Horovod, PyTorch with and without GPUs

as shown in Figure 1.

2 The IBM Spectrum LSF family is available in multiple editions ranging from LSF Standard Edition, which is just the
core scheduler, through to LSF Suite for Workgroups, Suite for HPC, Suite for Enterprise and the Suite for High
Performance Analytics. Unlike LSF Standard Edition, the LSF Suites use Ansible for installation.

3

Figure 1 Application Center with TensorFlow and Jupyter Notebooks

There are many additional capabilities, including dynamic reconfiguration, in the LSF family

that are beyond the scope of this paper. For those who are interested, the LSF Suite for High

Performance Analytics provides all the capabilities described in this paper.

WORKLOAD POLICIES

LSF has been used across a broad range of industries for over 25 years. As such, and based

upon various Client needs, many different policies and tuning options have been developed.

It is sometimes referred to as the “swiss army knife” of scheduling – you’re not quite sure

what all the blades are for, but they are there for a reason.

SAS Environment Manager exposes many of LSF’s settings and policies, but not everything

that would benefit managing additional analytics workloads is surfaced. SAS has made readily

available what was felt needed to manage their SAS environment workloads. It is not practical

to discuss every LSF option available, but we’ll highlight a number of common scenarios that

have come up repeatedly within the context of the SAS audience.

INTERACTIVE WORKLOADS

Let’s start with some basics – like prioritization. LSF provides numerous scheduling policies

to allow workloads to be prioritized with multiple service levels. The key question is ultimately

“how long is the user willing to wait for an answer”. With batch-orientated work it may be

minutes, or it could be hours or even days – but when someone is running interactively, the

answer is “now” or “ASAP” – and any perceived delay (whether real or imagined) often results

in the belief that IT is not providing good enough service.

A Banking client reported user dissatisfaction due to exactly this reason. They had attempted

to address it by adjusting the queue priority, but the users were still unsatisfied.

4

At a very high level, LSF performs a scheduling cycle every MBD_SLEEP_TIME seconds, and

the default value of this parameter varies depending on the version and edition of LSF that

you are using. There are multiple parameters that impact the overall latency between a job

being submitted and when it starts; therefore, changing the scheduling interval or the queue

priority will not address the client requirement.

The key to addressing this is setting:

NEW_JOB_SCHED_DELAY=0 in lsb.queues

This forces LSF to immediately evaluate any new job submitted into that queue, thus

minimizing any perceived scheduling delay.

AUTO-SELECTION OF QUEUES

The above setting met the client’s initial requirement; however, they didn’t want to expose

queue selection to their users. Could they have the queue auto-selected?

They were considering LSF’s “esub” feature to create a submission filter which would re-direct

the incoming workloads. But LSF already has a simple method for doing this:

DEFAULT_QUEUE=normal interactive in lsb.params

INTERACTIVE=ONLY in the Interactive Queue definition in lsb.queues

INTERACTIVE=NO in the Normal Queue definition in lsb.queues

This simple change means that when an interactive job is submitted (bsub -I) it will

automatically get routed to the interactive queue and be dispatched with the minimal latency.

There are additional policies that can be used to automate queue selection.

FAIRSHARE

A government client wanted to share the cluster among several departments, with a different

priority for each department. However, they did not want any department to be starved of

resources when the highest priority department had a large amount of work. LSF fairshare

scheduling can be used to address this type of requirement.

Fairshare scheduling, as the name implies, attempts to address the issue of sharing resources

through assigning shares to users. It divides the processing power of the LSF cluster among

users and queues to provide fair access to resources, so that no user or queue can monopolize

the resources of the cluster and no queue will be starved.

This type of scheduling calculates a dynamic priority for each user by analyzing not only how

many shares a user has but also determining the current and historical workload on a grid.

This includes the number of job slots reserved and in use by the user, the amount of time

jobs have been running, and the cumulative run time of finished jobs (adjusted so that

recently used CPU time is weighted more heavily than CPU time used in the distant past).

There are specific types of fairshare that handle resource contention across groups of user,

queues and hosts.

FAIRSHARE=USER_SHARES[[dev, 10] [test, 10] [default, 3]] in lsb.queues

5

There are numerous other factors that can be included in the fairshare calculation and there

are different ways it can be applied to achieve different business goals. Fairshare is just one

of the many policies available and can be combined with SLA (service level agreement)

scheduling to guarantee a share of the resource, or a specific throughput to meet our

objectives.

CONTROL GROUPS

In a multi-user environment, resource contention is often identified as a problem. In many

cases it is not due to users being malicious, it’s often down to the users not really knowing

what resources their jobs are taking, or coding errors where a query returns significantly more

data than expected.

In this case, the same client had some unstable (i.e. buggy) home grown application that was

running on their grid servers. At random times the application would create many threads

which ultimately consumed all processing resources on the server and crippled their SAS

workload.

While you can set memory, runtime, process limits, etc for the job, hitting these limits will

usually result in the workload being terminated. Sometimes this may be ok, but in other cases

it may result in knock on issues within the business process. Sometimes you just want to

ensure the job is confined to a set of resources that it cannot exceed.

Linux provides a capability known as a control group (cgroup) which allows a set of processes

to be bound to a set of cores, limited in memory consumption, and limit the workload to which

devices (such as GPUs) that it can use3. You can enable CGROUP enforcement in LSF by:

LSF_RESOURCE_ENFORCE="cpu mem" in lsf.conf

This setting will place each LSF job in its own cgroup, virtually walled off from every other

job, and ensuring the job cannot exceed its allocated resources.

By enabling LSF’s cgroup enforcement, this workload was bound to just the cores allocated

to it by LSF. Thus, when it spawned many threads, these were also automatically bound to

the same cores, and had no impact on the other SAS workloads.

Cgroup’s can also be used to control access to physical devices such as GPUs. In most

environments GPU’s are scarce resources, and while there is huge focus on developing GPU

enabled AI applications, many organizations struggle to justify dedicated GPU servers when

they may often lie idle, especially outside of office hours. [See below how GPUs can schedule

and be allocated to workloads via LSF.]

LSF DESKTOP CLIENT

SAS Studio provides clients convenience and mobility for SAS applications. The web browser-

based programming environment lets you access your files and work on SAS coding from

anywhere using your desktop or laptop. Given the growth of general analytics usage and the

rise of open source tools, SAS users often use applications like Jupyter Notebooks,

3 Control Groups offer many more capabilities which are also supported in LSF but are beyond the scope of this
paper.

6

TensorFlow, Dask, PyTorch and Spark as well. For these non-SAS workloads, IBM Spectrum

LSF Application Center provides similar convenience and mobility.

Using Application Center, you can define a web-based submission form for any application.

The submission form hides all the details of the remote application and LSF cluster settings.

With the submission form, a new user requires very little training to become productive, with

clients citing significant time savings [RedBull2019].

In addition to the browser-based Application Center, LSF also provides a mobile client (for

Android and iOS) and desktop client. Both the mobile client and desktop clients are built upon

the REST API. The light-weight desktop client allows you to submit your applications from

your Windows desktop to run in a remote cluster and easily check the results.

The desktop client for Microsoft Windows greatly simplifies the management of jobs by

enabling users to submit by right clicking on application input files. Output files can be

automatically written back to the desktop when the job completes, and users can additionally

receive job status notifications on the desktop.

WORKFLOWS

SAS users using SAS Scheduler with SAS Grid Manager for Platform will be familiar with the

java client for Flow Manager. We were approached by a client in the government sector who

needed to tighten their security and didn’t want users physically logging into the SAS servers

to design, submit and manage workflows.

Tricky with the Java client, but the LSF Suite does include a web-based version of Flow

Manager which is integrated with Application Center. This provides the freedom to manage

the workflows from any browser. Furthermore, the underlying scheduler server logic does not

change keeping the flow behavior the same.

Figure 2 Desktop Client

7

Figure 3 Flow Manager

For the users who need to create new flows, Application Center has a built-in flow editor

[Figure 4]. In addition, Application Center provides fine grained role-based access control

(RBAC) which allowed the client to define exactly who could create flows along with who could

manage specific flows.

Figure 4 Flow Editor

By having both the flow editor and flow manager integrated into Application Center it provides

a centralized interface to design and manage flows all together. This adds freedom to create

and submit any type of workflow. All types of workflows can be managed together with no

conflict. This is helpful to the clients which not only have interest in running SAS workflows

but also running TensorFlow, Horovo, PyTorch, etc. LSF Application Center has a separate

RBAC for better access control over the workflows. For example, many of our clients in the

Life Science industry are using this capability along with open source tools like CWL and Toil

to create complex workflows for Genomics sequencing [Wang2017, He2018].

8

GPU SUPPORT

SAS programs are increasingly leveraging GPU’s to get order of magnitude improvements in

performance [Bequet2017, Thompson2018]. In many cases, clients view GPU’s as a simple

“yes or no” device but in reality, many difference attributes need to be considered when

scheduling workloads to them such as driver and CUDA versions, memory, topology, the mode

the GPU is running in etc.

A client in health care and life sciences was developing an AI model in Python and wanted to

ensure that users who were running these GPU workloads automatically got access to the

GPU’s, and more importantly, those who were not supposed to be using them did not.

Enabling:

LSF_RESOURCE_ENFORCE="gpu" in lsf.conf

ensures that only jobs that explicitly request GPU resources can access them. Any job that

does not explicitly request GPU resources are blocked from accessing the GPU’s. This provides

IT with clear visibility of who and which workloads are using the GPU’s.

In 2008, we released our first GPU integration kit for LSF. There have been many advances

since then, and GPUs have come to the forefront in supporting ML/DL AI workloads such as

Tensorflow and PyTorch. LSF’s support for GPU’s has continued to evolve and most recently4

this has been extended to support autodetection and autoconfiguration of GPUs.

LSF supports a broad range of GPU capabilities including topology, NVLink, and accounting on

x86 (including DGX/DGX2), Power and ARM servers. Some examples are shown in Figure 5.

Figure 5 Examples of GPU Options

While the majority of GPU configuration is automatic, there are some additional optional

features that you can enable:

• CGROUP access control.

• Support for NVIDIA’s Data Center GPU Manager (DCGM). This provides additional

GPU health metrics and access to ECC error information.

4 Available in LSF 10.1.0.6

9

• Power Management – GPU’s can be powered down if not in use which can provide

significant power savings.

• Enable GPU usage to be considered in LSF’s fairshare scheduling policy.

CONTAINER SUPPORT

The basic concept of containers has been around on UNIX operating systems for many years,

but they only really took off on Linux with the introduction of Docker.

Containers were intended to be lightweight and portable. For those writing microservices and

web services, they typically are lightweight. For many others adopting containers, lightweight

becomes a relative term.

In many industries the principal benefit of containerization is simplifying application

deployment – i.e. portability. And while they may not contain an OS instance, it is not atypical

to have the whole legacy application and all its dependencies in a single container which is

Gigabytes or even tens of Gigabytes in size [SAS2018a].

One benefit of this approach is that there is very little difference between scheduling the

application and scheduling the containerized application:

$bsub my_app

$bsub -app docker my_containerized_app

The fact that the application is now a single file addresses many of the traditional objections

of running different applications in the same OS instance such as what if installing Application

X leads to issues or library incompatibilities with Application Y, which is the primary application

on the server? With the “guest” application in a container it does not change anything on the

host and allows other applications to share the instance, and it is scheduled and managed as

any other job – if there is contention for resources it can be throttled or terminated. We are

seeing many clients adopt using this approach to drive up utilization of existing environments.

Now Gigabyte sized containers are not exactly lightweight, and whether they are truly

portable becomes a function of storage space and network speed. LSF does provide several

additional capabilities that help with running “full app” containers:

• Security: LSF takes responsibility for the container lifecycle, which means the user

does not need to be in the DOCKER_USERS group, and thus the user never gains or

has the potential to gain elevated privileges.

• Control: A user could potentially install a container from any 3rd party repository –

something that makes IT Security feel very uneasy – how do we secure and audit the

environment when we don’t know what is installed or the provenance of it? Thankfully

LSF allows you to strictly control which repositories can be used, and indeed which

containers and versions of containers can be used.

• Auditability: The administrator has a central view of which containers are installed

where, and when they were last used. This allows storage management policies to

decide when to delete large unused containers.

• Affinity: If a container is gigabytes in size it may take tens of minutes or longer to

download and install. This is not really an issue if it is then going to run a service that

is going to exist for hours or days. But if it is to run a job and the job is only a few

10

minutes in duration, that’s very inefficient. LSF will try to re-use container images

rather than download them again, reducing the startup overhead.

• Flexibility: LSF supports multiple container technologies including Docker, Nvidia

Docker, Singularity, and Shifter.

The alternative approach involves re-architecting the application to consist of multiple loosely

connected micro-services each in their own container. Such applications, for example SAS

Viya [SAS2020] require the orchestration of containers through frameworks such as Docker

Swarm or Kubernetes.

THE RISE OF KUBERNETES

If you work in IT, it would be virtually impossible to miss the rise of Kubernetes. We are

seeing a dramatic shift in the market where our clients are looking to take advantage of

Kubernetes for both existing and new workloads. How to achieve this without extensive

application rework or standing up multiple environments does present IT with interesting

challenges. In this section we’ll discuss a possible approach that has been used at several

clients.

While SAS has announced a partnership [SAS2019] with Red Hat around SAS Viya and

OpenShift, the Red Hat flavor of Kubernetes, as well as SAS Viya on IBM Power [IBM2019],

it is beyond the scope of this paper to discuss containerizing SAS. For those interested in a

deeper discussion, we would recommend [Furbee2019a, Furbee2019b, Zennick2019].

For those who are interest, the LSF Suite can be run in Kubernetes. We provide a Kubernetes

Operator to provide one click deployment of the cluster Figure 6.

Figure 6 LSF running on OpenShift

WORKLOAD (POD) ORCHESTRATION IN KUBERNETES

Kubernetes is an excellent container orchestration platform and excels at managing stateless

and stateful services. All workloads in Kubernetes run in a pod, which is a collection of one or

more containers and associated resources required to run an instance of that workload.

11

Decisions about scheduling and placement of pods onto the underlying infrastructure is made

by the Kubernetes Scheduler. This pod placement is completely independent of any

application level workload scheduling that occurs within the pods. For example, SAS Workload

Orchestrator can be managing the work within the pods, while the Kubernetes scheduler is

controlling the placement of the actual pods onto the infrastructure.

The default scheduler in Kubernetes is relatively simplistic since it was designed to handle

services along with the assumption that the cluster could grow and shrink as needed. This

means that there are challenges and shortcomings when more dynamic or ad-hoc workloads

need to be run. Table 1 illustrates some of the differences between traditional schedulers

and the Kubernetes scheduler.

 Workload Schedulers Kubernetes

Focus Highly Scalable schedulers with rich
scheduling policies that have
developed over many years.

Cloud Native container orchestration
platform designed for managing

services / microservices.

Workloads Typically, ad-hoc, either user or
calendar driven with workloads

typically running as the submission
user or as a service user.

Typically, managed services running
as service users.

Environment Mix of bare metal, virtual machines,
containers and cloud.

Everything containerized.

Container Usage Primarily used as a deployment
mechanism. (Very) large containers
containing the whole application and
expected to run with the submitting

users’ credentials.

Orchestrated Services composed of
multiple containers. Typically

running as service users.

Resource Model Assumes resources (time, space,
money) are finite which requires

sharing & prioritization.

“Cloud Native” – assumes resources
are infinite and the environment can
always be automatically enlarged.

Table 1 Workload Attributes

Kubernetes as a cloud native orchestrator has three core autoscaling functions that help

arbitrate between different workload (pod) demands:

• The horizontal autoscaler allows a service or workload to horizontally scale – e.g.

creating more instances (pods) of a web server to handle an increase in load or

launching more instances of the CAS server in Viya.

• The vertical autoscaler allows a single instance to grow vertically – i.e. to consume

more system resources than originally defined. As with a VM, today if you vertically

scale a pod it needs to be restarted, unlike an LSF job where the resource limits

on a job can be dynamically changed without restarting.

• If there is more work than there is space available, the cluster autoscaler then

kicks in to enlarge the cluster. If you are running on the cloud then enlarging the

cluster is usually possible, subject to budget. But if you are running on premise

or are budget constrained, then enlarging is likely not possible - you need to

arbitrate between competing workloads with a finite amount of space meaning you

need a workload orchestrator.

This leads to an interesting contrast. On one hand we have the Cloud providers talking about

running very large Kubernetes environments supporting multiple lines of business and

applications, while many on premise organizations are often running multiple Kubernetes

12

silos, unable to leverage the benefits of a more consolidated Kubernetes environment due to

the deficiencies in the core scheduler.

The Kubernetes community has recognized these deficiencies and the Scheduling Working

Group does plan to incrementally enhance the scheduler. But that does not help us today.

ENHANCED SCHEDULING KUBERNETES PODS

Kubernetes is however designed to be extendable through plug-ins and custom resource

definitions (CRD), and we do have an orchestrator available: LSF.

We have created a new plugin scheduler for Kubernetes based on LSF called HPAC (High-

performance Pod Allocation for Containers). In simple terms, this means that the HPAC

scheduler is taking responsibility for orchestrating and prioritizing pod placement requests

and doing so in a manner that is completely transparent to the workload in the containers.

For example, to scale the number of CAS workers in Viya you would use the Kubernetes

command [Furbee2019b]:

$kubectl scale deployment sas-viya-cas-worker --replicas=6 -n myviya run

The Kubernetes scheduler then decides where to place the additional replicas in the cluster.

If you enabled HPAC as the Kubernetes Scheduler, then the command would be the same –

HPAC does not change the application logic. The only difference would be that the decision

on where to place the new pod replicas within the Kubernetes environment would be

made by HPAC. Decisions on where workloads run within the pods is still made by the

application. A Kubernetes Administrator can use HPAC and the associated workload policies

to orchestrate which pods get started and which pods will queue based on fairshare and SLA’s.

Figure 7 illustrates how this HPAC scheduler plugin works. It can be configured as the default

scheduler, or explicitly called just for some workloads. For those wanting to fine tune

workloads, HPAC scheduler specific annotations can be specified in the application’s yaml.

Figure 7 Enhanced Kubernetes Pod Scheduler

13

ELASTIC WORKLOADS

In AI, there are frameworks that support Elastic Distributed Training and Elastic Distributed

Inference5 which will grow and shrink the required number of pods allocated to a user or

group of users depending on who else is using the environment. For example, if there are no

other users, the first user could be allocated all CPUs and GPUs allowing their AI training job

to progress as quickly as possible. When a second user wants to use the system, the first user

is automatically shrunk back to half the GPUs. When a third user wants resources, it is

reallocated again and so forth. Such behavior requires coordination between the application

framework and the underlying scheduler.

A HYBRID LSF-KUBERNETES ENVIRONMENT

It is rarely practical for an organization to containerize all workloads overnight. One solution

would be to stand up two environments – one for legacy workloads and the other for

Kubernetes workloads. While this is the simplest approach, it is frequently viewed as the most

expensive.

An alternative approach would be to create a hybrid environment that supported both

containerized and non-containerized workloads. We previously discussed how LSF supports

this for Docker, Singularity and Shifter containers, but what about Kubernetes?

As HPAC is based on LSF, we can also deploy the HPAC-Kubernetes integration in a hybrid

mode with LSF execution servers, and have HPAC act as a single brain orchestrating

Kubernetes and non-Kubernetes workloads in the same hardware cluster, and even within the

same OS instance as shown in Figure 8. Kubernetes can be deployed on all or just a subset

of the servers that LSF is installed on. With HPAC acting as a single brain, it will prioritize

both LSF and Kubernetes workloads and decide on placement and allocation of resources.

Most importantly, this means that both the traditional IT environment, and the Kubernetes

environment can shrink and grow dependent upon business workload priorities.

Figure 8 Mixed Kubernetes and non-Kubernetes Workloads

5 For example, IBM Watson Machine Learning Accelerator.

14

This hybrid approach can be used to mix legacy and cloud native applications, and to support

application modernization. For example, IBM Watson Machine Learning Community Edition

provides containerized versions of popular AI frameworks compiled for IBM Power Systems.

It is typically used directly by LSF as shown on the right-hand side of Figure 9.

On the left-hand side is IBM Watson Machine Learning Accelerator which is a Kubernetes

native application – using this hybrid mode we can run both in the same environment and

avoid the costs of setting up two separate environments.

Figure 9 Supporting Application Modernization

CLOUD & HYBRID CLOUD

Cloud provides the opportunity to tackle new problems, introduce new processes, or reduce

costs, but it is not a panacea for everything. We’ve heard many tales of significant challenges

from clients where they have been told to “just use the cloud” without any real appreciation

of what is required. Moving to a cloud-based mail service is straightforward, but moving an

end to end business process, and all the associated data takes a lot more awareness and

thought. SAS have done a lot of that thought and provided guides to running SAS 9.4 and

SAS Viya on the Cloud [SAS2018b, SAS2018b].

If you are running SAS Grid Manager for Platform as part of your cloud deployment, you can

leverage its Resource Connector capability to have the size of the overall cluster flex in

response to workload demands [SAS licensing considerations are not to be ignored] – adding

or removing VM instances depending business goals. This LSF capability is supported on AWS,

Azure, GCE, IBM Cloud and with OpenStack.

HYBRID CLOUD

If you have a significant investment in your on-premise infrastructure or wholesale movement

of your data to the cloud is impractical for volume, commercial or legal reasons then the Cloud

doesn’t look all that enticing.

We are seeing many, many clients leveraging cloud and hybrid cloud for different classes of

workload, especially for R&D or Dev/Test. These typically use reference [or cleansed] data

sets which do not pose commercial or legal issues in them being used off prem.

Even if you do not have commercial or legal inhibitors to leveraging hybrid cloud, there are

other issues to consider:

15

• Application Licensing – can you run off premise, and what is the licensing model for as

a service use?

• Latency – there are startup costs involved with spinning up new instances in the cloud,

and users will certainly notice these running interactive applications. Horton2020

proposes a novel method leveraging functionality in the Resource Connector to

alleviate this.

• Data – this is the key issue for many who try to leverage hybrid cloud - getting the

right data to the cloud in a timely manner. Luckily, the combination of LSF’s

MultiCluster, Resource Connector, and Data Manager can help.

A HYBRID ARCHITECTURE

Figure 10 illustrates a typical hybrid cloud environment.

• MultiCluster decides what and when to forward work to the Cloud, based on workload

and business rules.

• Resource Connector decides when to scale cloud resources, and thus when to incur

costs, also based on business rules. Most cloud providers have their own “autoscalers”

for LSF which are typically just based on the number of pending jobs – so scale up as

quickly and to as many as possible to reduce the pending jobs. This also typically

means incurring the maximum cost. One client switched from the Cloud Provider’s

own autoscaler to our resource connector and immediately saw a 30% saving in cloud

costs, while maintaining the same service levels. As previously mentioned, the

Resource Connector also supports OpenStack, which is very important as many

organizations have internal OpenStack based environments. Which means the Grid

can burst into the internal OpenStack environment where data movement costs are

much lower or may not exist at all.

• Data Manager extends scheduling decisions to include data requirements. You want

to ensure that the required data is available in the cloud before any instances are spun

up and costs incurred. If the required data for a given job is not available, Data

Manager will invoke a transfer job to make it available – how data is moved is site

configurable. Data Manager will also try and deduplicate transfers – so if you are

running a 1000 step parametric sweep over the input data, it will only move it once,

and not 1000 times.

Figure 10 - Hybrid LSF Architecture

16

SERVERLESS OR FUNCTION AS A SERVICE

For those who remember RPCs (remote procedure calls), Serverless or Function as a Service

(FaaS) doesn’t seem all that different – it allows a function to be offloaded somewhere else.

In the context of Cloud and Containers it does offer some interesting advantages in that you

can define your own function that will be run, and it will typically execute in a container on

the cloud – and you only pay for time consumed, with no need to worry about setting up

resources, queues or anything else.

And this is great, if where the function is executing is where your data is…i.e., on the cloud.

If you must export all the necessary data to the cloud, then pull all the results back again,

you may incur more time and costs in data movement than in computation.

FAAS & GRID

We recently had a client approach us with an interesting problem. They had python users

wanting to use the simplicity of a FaaS model, but all their data was already in their grid

environment and they didn’t want to replicate it all to the cloud. Given everything else we

were already supporting in their grid environment, could we support the FaaS users?

After a bit of thought, well quite a lot of thought, we put together the pieces we’ve already

discussed in this paper to build a prototype solution using iPython and a Jupyter Notebook as

the front end:

[1] import pandas as pd

 import numpy as np

 from sklearn import linear_model

[2] def regression_func(file)

 df = pd.read_csv(file)

 cdf =df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION','CO2EMISSIONS’]]

 msk = np.random.rand(len(df)) < 0.8

 train = cdf[msk]

 regr = linear_model.LinearRegression()

 train_x = np.asanyarray(train[['ENGINESIZE']])

 train_y = np.asanyarray(train[['CO2EMISSIONS']])

 regr.fit (train_x, train_y)

 return regr

[3] id = lsf.sub(regression_func, array_of_input_files)

[4] regression = lsf.get(id)

The user defined function, regression_func() in the example above, is sent to the LSF cluster

via the RESTful API and executed as an array on the LSF cluster, each element in its own

container.

While this as present is just a prototype, it illustrates how the different capabilities already

within the LSF Suite can be combined to address new workloads.

17

CONCLUSION

What Lessons have we learned from the field?

Firstly, the workload management requirements for those running SAS and other analytical

workloads are not all that different from those in other industries. Existing LSF capabilities

can be readily applied to address these requirements especially as we see the merge of high-

performance computing and high-performance analytics uses.

Secondly, as with other industries, Cloud is a hot topic, but there are significant challenges in

bursting on premise workloads to the cloud, particularly in relation to data – but there are

workable solutions.

Thirdly, Containers and Kubernetes are viewed as key technologies for the modernization of

most enterprise’s application infrastructure. While Kubernetes is an excellent orchestrator

there are challenges in managing certain classes of workload, particularly in AI.

And finally, there are a lot of capabilities “under the hood” in SAS Grid Manager for Platform

that many SAS Grid clients are unaware of. We would be delighted to discuss how to get the

most out of your investment.

18

REFERENCES

Bequet2017: Bequet, H & Chen, H. Accelerate your SAS Programs with GPUs,

https://support.sas.com/resources/papers/proceedings17/SASSD0706-2017.pdf

Furbee2019a: Furbeee, J: Getting started with SAS Containers

https://blogs.sas.com/content/sgf/2019/03/06/getting-started-sas-containers/

Furbee2019b: Deploying the Full SAS Viya Stack in Kubernetes

https://blogs.sas.com/content/sgf/2019/06/10/deploying-the-full-sas-viya-stack-in-kubernetes/

Haig2019: Haig, D. Introducing SAS®Workload Orchestrator, the New SAS®Grid Manager Workload Manager

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3430-2019.pdf

He2018: He, YY. Go With the Flow – Accelerating Complex Computational Workflows

https://www.hpcwire.com/solution_content/ibm/cross-industry/go-with-the-flow-accelerating-complex-
computational-workflows/

Horton2020: Horton, G, Paper # SASGF2020

IBM2019: Accelerate insights with SAS® Analytics on IBM® POWER9™

https://www.ibm.com/blogs/systems/accelerate-insights-with-sas-analytics-on-ibm-power9/

KDNuggets2018: 2018 KDnuggets annual software survey.

https://www.kdnuggets.com/polls/

Redbull2019: https://www.ibm.com/it-infrastructure/spectrum-computing

SAS2018a: Understanding Containers and SAS®9.4 Container Deployment.

http://support.sas.com/resources/papers/understanding-containers-sas-9-4-container-deployment.pdf

SAS2018b: SAS Grid on the AWS Cloud

https://s3.amazonaws.com/aws-quickstart/quickstart-sas-grid/doc/sas-grid-on-the-aws-cloud.pdf

SAS2018c: SAS Viya on the AWS Cloud

https://aws-quickstart.s3.amazonaws.com/quickstart-sas-viya/doc/sas-viya-on-the-aws-cloud.pdf

SAS2019: SAS and Red Hat collaborate to optimize analytical capabilities across the hybrid cloud.
https://www.sas.com/en_is/news/press-releases/2019/october/sas-red-hat-openshift-hybrid-cloud.html

SAS2020: SAS® for Containers: Bringing speed, agility and scale to cloud deployments.

https://www.sas.com/en_gb/solutions/cloud-computing/on-providers/deployment-patterns/for-containers.html

Thompson2018: Thompson, W. Why you need GPUs for your deep learning platform

https://blogs.sas.com/content/subconsciousmusings/2018/10/16/why-you-need-gpus-for-your-deep-learning-
platform/

Welch2019: Welch, J. Tensorflow & Pytorch Examples running in IBM Spectrum LSF Suite v10.2 cluster using IBM
Power server

https://www.youtube.com/watch?v=zJkjuwFHD3M

Wang2017: Wang, Q. Running CWL Workflows with LSF through Toi
https://developer.ibm.com/storage/2017/05/04/cwl-workflow-lsf-toil/

Zenick2019: Zenick, B, Gomez, I & Koob, M. Modernizing Your SAS Analytics Platform with Containers.

https://www.zencos.com/blog/flexible-low-cost-sas-analytics-containerized-solution/

All URL’s last accessed February 17, 2020

https://support.sas.com/resources/papers/proceedings17/SASSD0706-2017.pdf
https://blogs.sas.com/content/sgf/2019/03/06/getting-started-sas-containers/
https://blogs.sas.com/content/sgf/2019/06/10/deploying-the-full-sas-viya-stack-in-kubernetes/
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3430-2019.pdf
https://www.hpcwire.com/solution_content/ibm/cross-industry/go-with-the-flow-accelerating-complex-computational-workflows/
https://www.hpcwire.com/solution_content/ibm/cross-industry/go-with-the-flow-accelerating-complex-computational-workflows/
https://www.ibm.com/blogs/systems/accelerate-insights-with-sas-analytics-on-ibm-power9/
https://www.kdnuggets.com/polls/
https://www.ibm.com/it-infrastructure/spectrum-computing
http://support.sas.com/resources/papers/understanding-containers-sas-9-4-container-deployment.pdf
https://s3.amazonaws.com/aws-quickstart/quickstart-sas-grid/doc/sas-grid-on-the-aws-cloud.pdf
https://aws-quickstart.s3.amazonaws.com/quickstart-sas-viya/doc/sas-viya-on-the-aws-cloud.pdf
https://www.sas.com/en_gb/solutions/cloud-computing/on-providers/deployment-patterns/for-containers.html
https://blogs.sas.com/content/subconsciousmusings/2018/10/16/why-you-need-gpus-for-your-deep-learning-platform/
https://blogs.sas.com/content/subconsciousmusings/2018/10/16/why-you-need-gpus-for-your-deep-learning-platform/
https://www.youtube.com/watch?v=zJkjuwFHD3M
https://developer.ibm.com/storage/2017/05/04/cwl-workflow-lsf-toil/
https://www.zencos.com/blog/flexible-low-cost-sas-analytics-containerized-solution/

19

ACKNOWLEDGMENTS

The authors would like to especially thank Cheryl Doninger for her many years of leadership

with and around SAS Grid Manager and Platform Suite for SAS along with her tireless effort

to enable the teams to provide a high quality solution enabling SAS customers to get even

more insight out of their businesses and value out of their analytics software investment. The

SAS research and development team of Scott Parrish, Doug Haigh, Randy Williams, Paula

Kavanagh amongst others over time have assisted in the same regard. Ken Gahagan, Tony

Brown, Margaret Crevar, and Glenn Horton at SAS have supported the focus on performance

and deployment in the field with deep architecture and real-world expertise. Finally, Kevin Go

has been our Alliances support and has helped manage the SAS-IBM relationship to many

great successes. To all of you thank you!

Additionally, the authors would like to thank IBM development leaders Gang Pu, and Jin Chi

He. Finally, we wish to thank Gregg Rohaly for Alliances support and helping manage the SAS-

IBM relationship to many great successes.

RECOMMENDED READING

• https://www.ibm.com/us-en/marketplace/spectrum-computing-for-hpa

• https://www.ibm.com/support/knowledgecenter/SSGFRP_10.2.0/welcome/suite_hpa_kc

_overview.html

• LSF User Community http://ibm.biz/LSFCommunity

• SAS® GRID Computing For Dummies® https://www.sas.com/en/whitepapers/sas-grid-

computing-for-dummies-108762.html Most of the examples in this book are using SAS

Grid Manager for Platform.

• IBM Spectrum LSF Suites Best Practices – IBM RedBooks, March 2020.

• IBM Spectrum Scale Best Practices for Genomics Medicine – IBM Redbooks, April 2018.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Biill.McMillan@uk.ibm.com

Qingda Wang qwang@ca.ibm.com

Kinson Chik kchik@ca.ibm.com

https://www.ibm.com/us-en/marketplace/spectrum-computing-for-hpa
https://www.ibm.com/support/knowledgecenter/SSGFRP_10.2.0/welcome/suite_hpa_kc_overview.html
https://www.ibm.com/support/knowledgecenter/SSGFRP_10.2.0/welcome/suite_hpa_kc_overview.html
https://www.sas.com/en/whitepapers/sas-grid-computing-for-dummies-108762.html
https://www.sas.com/en/whitepapers/sas-grid-computing-for-dummies-108762.html
mailto:Biill.McMillan@uk.ibm.com
mailto:qwang@ca.ibm.com
mailto:kchik@ca.ibm.com

