#SASGF

Paper SAS 5332-2020
Coding in SAS® Viya®

Charu Shankar, SAS Institute Inc.

ABSTRACT

This hands-on workshopis for users who want to take advantage of the boost in processing
speed for Base SAS programs executing in SAS Viya. This paper covers using the power of
SAS Cloud Analytic Services (CAS) to access, manage, and manipulate in-memory tables.
The purpose of this paper is to support users in their ability to get started with coding in
SAS Viya as they transition from coding in Base SAS programs. Users learn to perform three
simple yet important tasks to get comfortable with the language of SAS Viya: connectto the
CAS LIBNAME engine for data transfer between SAS and CAS; load data to a caslib and
process data in CAS; and modify SAS programs to runin SAS Viya.

INTRODUCTION

SAS Viya s a cloud-enabled, in-memory analytics engine that provides quick, accurate, and
reliable analytical insights. The latest enhancement of the SAS Platform, SAS Viya is an
open, cloud-enabled, analytic run-time environmentwith a number of supporting services.
One of those supporting services is SAS Cloud Analytic Services, or CAS. CAS provides a
powerful in-memory engine that delivers blazing speed to accurately process your big data.
It uses scalable, high-performance, multi-threaded algorithms to rapidly perform analytical
processing on in-memory data of any size. Data usedinthis paper can be downloaded from this
Github Repository https://github.com/CharuSAS/Coding|nSASViya.

SAS Viya on the SAS Platform

SAS Platform

SAS Viya
¢ an open, cloud-enabled, analytic run-time environment

SAS Cloud Analytic Services (CAS)

o O B

in-memory fast data of
engine processing any size

gsas

Terminology

File is used to refer to the source data thatis in a caslib’s data source. For a caslib that
uses a path-based data source, this is natural. For a caslib that uses a database as a data
source, the tables in the database are referred to as files.

Table is used to refer to in-memory data. After a file (using the preceding definition) is
loaded into the server, itis referred to as a table.

https://github.com/CharuSAS/CodingInSASViya

CAS - in SAS Viya, SAS Cloud Analytic Services (CAS) is the star of the show, providing
lightning fast analytics of in-memory data for SAS Visual Analytics and other software
offerings.

SPRE - Foundation SAS, the long-time workhorse of SAS analyticsis also offered, referred
to as the SAS Programming Runtime Environment (SPRE). SPRE provides a user interface
and data processing environment for executing classic SAS program code. It offers the
Foundation SAS software that we're all familiar with, including Base SAS, SAS/ACCESS
engines, and more, as well as the SAS Studio web application.

SAS Viya on the SAS Platform
SAS Viya and SAS®9

SAS Vi
One SAS

Platform
SAS®9

§sas

SAS Viya is not a replacement for SAS®9. You can still leverage your SAS programming
knowledge and make madifications to existing SAS code to enable it to runin SAS Viya.

SAS Viya Programming Process
Use the SAS Code That You Are Familiar with

(¢
4l 0
. SAS code

= OF

SAS Programming Interfaces: SAS Studio Login

gsas

SAS Studio is the SAS language code editor in SAS Viya. With the latest release of SAS
Viya, you can also use SAS Enterprise Guide 7.15 and SAS 9.4M5 to submit code to CAS.

Launch Google Chrome. Click the SAS Viya tab below the address bar and select SAS
Studio. Sign in to SAS Studio with the following credentials:

lynn Studentl

1. CONNECT TO CAS

After a CAS session starts, you can write code and submit CAS-enabled procedures.

1.1 CONNECT TO CAS SERVER
Here is the code to connect to the CAS server:

cas mySession sessopts=(caslib=casuser timeout=1800 locale="en _US");

NOTE: The session MYSESSION connected successfully to Cloud Analytic Services
server.exnet.sas.com using port 5570. The UUID is f000e610-2a3a-b249-9a7a-645688943631. The
user is lynn and the active caslib is CASUSER(lynn).

NOTE: The SAS option SESSREF was updated with the value MYSESSION.

NOTE: The SAS macro _SESSREF_ was updated with the value MYSESSION.

NOTE: The session is using 0 workers.

NOTE: "CASUSER(lynn)*" is now the active caslib.

NOTE: The CAS statement request to update one or more session options for session MYSESSION
completed.

Display 1: Log showing That the CAS Session MYSESSION Started Successfully

1.2 ACCESSINGCASLIBS

A caslib is a container for both the files in the caslib’s data source and the in-memory tables
that you load from the data source.

Here is the code to list caslibs:

caslib _all_ list;

NOTE: Action caslib LIST completed for session MYSESSION.
82 caslib _all_ list;
NOTE: Session = MYSESSION Name = CASUSER(lynn)
Type = PATH
Description = Personal File System Caslib
Path = /opt/sas/viya/config/data/cas/default/casuserlibraries/lynn/
Definition =
Subdirs = Yes
Local = No
Active = No
Personal = Yes
NOTE: Session = MYSESSION Name = Formats
Type = PATH
Description = Stores user defined formats.
Path = /opt/sas/viya/config/data/cas/default/Tormats/
Definition =
Subdirs = No
Local = No
Active = No
Personal = No

Display 2: Log Verifying That Casuser Is the Active Caslib

Here is the code to list the files in casuser, which is the defaultcaslib or active caslib:

proc casutil;
list files;
quit;

On the Results tab, observe that the sales.xlsx file is listed.

Here is the code to create a new caslib:
caslib mycas path="/workshop/casfiles’;

NOTE: "MYCAS®" is now the active caslib.
NOTE: Cloud Analytic Services added the caslib "MYCAS*®.
NOTE: Action to ADD caslib MYCAS completed for session MYSESSION.

Display 3: Log to Verify That MYCAS Is the Active Caslib

In the navigation pane, select Libraries = My Libraries. The mycas libraryis not visible.

By default, the caslibs do not show up in the Libraries tree in SAS.

Here is the code to assign a new caslib:
caslib _all_ assign;

In the navigation pane, select Libraries = My Libraries. The mycas library should be

visible. Using the CASLIB statement with the ASSIGN option and the _ALL__keyword assigns
SAS library references for existing caslibs for visibility in the Libraries tree in SAS Studio.
Because CAS processes only in-memory tables, tables are loaded into memory before they

are used in CAS.

1.3 CHANGINGAN ACTIVE CASLIB

Active Caslib
Ways to Change the Active Caslib

The default caslib
becomes active again.

. [— (i —

Casuser(Lynn) Mycas Public

active caslib caslib caslib

Clear the active caslib.

Gsas

There is only one active caslib at a time in a CAS session. The active caslib is where data is

processed by default.

When Lynn starts a session, her personal caslib, casuser (Lynn), is defined by default and
is the active caslib. She can use it to access the files in the directory /home/lynn/casuser.

If Lynn wants to access data in another directory, she can use the CASLIB statement, and
the newly defined caslib becomes the active caslib.

If Lynn wants to access data in another directory, she can use the CASLIB= option in the
CAS statement, and the referenced caslib becomes the active caslib.

When Lynn clears the active caslib, her default caslib becomes active again.

2. LOAD DATA TO A CASLIB AND PROCESS DATA IN CAS

In the first section, we started a CAS session and accessed a caslib. Because CAS can
process data only in its in-memory space, the next step is to load your file into memory.
Subsequently, data updates and analysis can begin.

Source data files mapped to a caslib are referred to as server-side files. These files can be
rapidly loaded into the caslib’s in-memory space for processing. After afile is loaded into
memory, itis referred to as a table. These CAS tables are in-memory copies of the
associated CAS file. The source data files remain on disk and unchanged.

Load Files to In-Memory Tables

Caslib

In-Memory Space

Data Source

; server-side
I | - ;
% ' + files

gsas,

2.1 SESSION SCOPE VERSUS GLOBAL SCOPE
In-memory tables can have either session scope or global scope.

In-Memory Table Scope
Session versus Global

E Session N\
: Scope 1 Global Scope

Promote=NO - — Promote=YE Bramiote
s d table

visible only to the CAS
session where it was created

wisible only to the user who
created the table

dropped from memaory upon
termination of CAS

§sas

By default, in-memory tables have session scope. A session-scope table is accessible only in
the CAS session where it was created. It's only visible to the user who created it. Session-
scope tables are useful for ad hoc data access and analysis because they don't require
access control checks or locking for concurrent access.

A session-scope in-memory table exists only for the duration of the session. When the CAS
session ends, the table is dropped.

To share data across your sessions or with other users, create a global-scope table, also
called a promoted table. You can promote a table when you load a file into memory or
promote an in-memory session table. After a session-scope table is promoted, it's visible
across CAS sessions.

Unlike session-scope tables, global-scope tables are not dropped from memory when a CAS
session ends. The table is still available to other sessions and will be available in the next
CAS session that the user starts.

To understand the concepts of session versus global scope, we will load the client-side
SAS data set, mysas.employees, into Lynn’s personal caslib. Lynn creates an in-
memory session-scope table, myemployees. This is a table that others will need to
access. When Lynn is happy with the contents of the session-scope table, she uses the
PROMOTE statement to create a global-scope table in the public caslib so that other
users can use the in-memory table.

Here is the code to load data, create a session scope table, and promote it:

proc casutil;
load data=sashelp.cars outcasl ib=casuser
casout="MyCars" replace;
load data=mysas.employees outcaslib="casuser"
casout="MyEmployees™ promote ;
quit;
proc casutil;
list tables incaslib="casuser";
quit;
The log shows that CAS processed the code, and the results show specific metadata
about the myemployees and mycars tables.

The CASUTIL Procedure

Caslib Information

Library CASUSER{lynn

The CASUTIL Procedure

Table Infermation for Caslik CASUSER({lynn)
Number MNumber NLS Promoted Repeated

Table Mame Label of Rows of Columns Indexed Columns encoding Created Last Modified Table Table View Compressed
MYCARS 2004 Car Data 423 15 0 wifg 2020-02 2020-02-18T14:28:43-05:00 No Mo No No
MYEMPLOYEES 043 24 Q0 utf-8 2020-02-18T14 -02-18714:28 Mo No No

Display 4: Metadata about the myemployees and mycars Tables

The mycars table is session scope (Promoted Table=No) and is dropped from memory
when the CAS session ends.

The myemployees table is global scope (Promoted Table=YES) and is not dropped
from memory when the CAS session ends.

2.2 LOADINGCLIENT-SIDE DATA INTO CAS

Files of any type that are not mapped to the caslib are called client-side files. You load files
into the in-memory space in CAS using your client software. To load a client-side SAS data
set that resides in a SAS library, we use the CASUTIL procedure LOAD statement with the
DATA= option.

Loading Data into Memory in CAS
Client-Side Files

Caslib

In-Memory Space

Data Source

<CASOUT="target-table-name">

<0OUTCASLIB="cos/ib">

<PROMOTE | REPLACE> <option(s)>;
auim;

PROC CASUTIL;
LOAD DATA=SAS-data-set

client-side files

gsas,

We proceed to load the client-side SAS data set, mysas.employees (mysas is a local
SAS library), into a CAS table in Lynn’s personal caslib and investigate the contents of the
in-memory table.

Here is the code to load mysas.employees into a CAS table in Lynn’s personal caslib:

proc casutil;
load data=mysas.employees casout="Employees'" replace;
quit;

In the navigation pane, in the SAS Studio tree, expand Libraries = My Libraries =
CASUSER to verify that employees was loaded into the casuser caslib.

Here is the code to verify that employees was loaded into the casuser caslib:

proc casutil;
list tables incaslib="casuser'';

quit;

proc casutil;
NOTE: The UUID "f019e5a3-36e9-3642-a00b-7e6ecb5a35dd™ is connected using session MYSESSION.

list tables incaslib="casuser";
NOTE: Cloud Analytic Services processed the combined requests in 0.003401 seconds.

quit;

Display 5: Log Indicating That CAS Processed the Code

The employees table is session scope (Promoted Table=No) and is dropped from
memory when the CAS session ends.

The CASUTIL Procedure

Caslib Information

The CASUTIL Procedure

Table Infermation for Caslib CASUSER(lynn)

Promoted Repeated
Table Table View Compressed

Ne Neo Ne No
Neo Ne No

Number Number NLS
Table Name of Rows of Columns Indexed Columns encoding

EMPLOYEES 648 24 0 uf-B
MYEMPLOVEES 648 24 0 w8

Display 6: Results Showing Specific Metadata about the Employees Table
Here is the code to generate a report of the descriptor portion of the in-memory table:

proc casutil;
contents casdata="‘employees' incaslib="casuser";

quit;

proc contents data=casuser.employees varnum;
run;
Let’s compare the results. SAS Viya has additional data types. The data type DOUBLE

maps to a SAS numeric data type. SAS Viya also supports CHAR, which is the SAS
character fixed-width data type, and the VARCHAR data type, which is a variable -

length character field.

Table Name
EMPLOYEES

Node
ALL

Table Information for Caslib CASUSER{lynn)

Promoted Repeated

Number Number
of Rows of Columns Indexed Columns encoding Created Last Modified
648 24 0 uthB -02-18T21:13:10-05:00 2020-02-18T21-13:10-05-00
Detail Information for smployees in Caslib CASUSER({lynn).
Number
of Active Varisble Blocks Memory Blocks ~ Memory Blocks Memory
Blocks Blocks Rows Datasize Data size Mappad Mapped Unmapped Unmapped Allocated Allocated
1 1 848 243648 o o 0 0 0 1 243648
Column Information for EMPLOYEES in Caslib CASUSER(lynn)
Format Formstted Format
Column Label Type Length Name Length Width
Employes_ID Employes ID double 8 F 12 12
Employes_Country Employes Coun char 2 2 2
Company Company char 30 30 0
Department Department char 40 40 0
Section Section char 40 40 0
Org_Group Graup char a0 40 0
Job_Titls Job Tide char 25 25 0
Salary Annual Salary double 8 DOLLAR 13 13
Employes_BirthDate ~ Employes Birth Dat= double 8 DATE 9 9
Employes_Hirs_Date Employes Hirs Date double 8 DATE 9 9
Employes_Tarm_Date Employes Terminstion Dste double 8 DATE 9 9
Manager_Levels Levels of Managament double & 12 0
Manager_Levell Manager st 1 level double & 12 0
Manager_Level2 Manager at 2. level double 8 12 0

Table

No

Farmat
Decimal

Table
No

View

No

Index Compleued Compression
Siz R

Compressed

atio

No

Display 7: Partial PROC CASUTIL Results

Member Type
Engine
Created

Last Modifisd
Protection
Data Set Type
Labal

Data Reprasen

Encoding

Dsta Set Name

The CONTENTS Procedure

tation

utf-8 Unicode (UTF-8)

SOLARIS_XB&_&4, LINUX_X86_g4, ALPHA_TRUS4, LINUX_LAS4, LINUX_P!

Observations

Variables

Indexes
Obssrvation Length
Deletad Obsarvstions

Comprassed

Sorted

Engine/Host Dependent Information

100MB

Data Limit
Caslib
Scape

Varisbles in Creation Order

§ Varisble Type Len Format Lebel
1 Employes_ID Num 8 Fi2 Employee ID

2 Char 2 Employee Cauntry

3 Char 30 Company

4 Char 40

s Char 40 Saction

6 Char 40 Group

7 Char 25 Job Tidde

8 Mum & DOLLARI3. Annual Sala

9 Employes BinhDate Num 6 DATES Employee Birth Date

10 Employes_Hire Dste Mum 8 DATES. Employee Hirs Data

11 Employes Term Date Num 6 DATES Employee Termination Date
12 Manager_Levels Mum 8 Levels of Management

13 Manager_Levell Mum 8 Manager at 1. level
14_Manager_Level2 Num 8 Manager at 2. level

Display 8: Partial PROC CONTENTS Results

2.3 LOADINGSERVER-SIDE FILES INTO CAS AND PROMOTING TABLES

What if you need to load a server-side file that's stored in the caslib’s data source? You
use the CASUTIL procedure LOAD statement with the CASDATA= option.

Loading Data into Memory in CAS

Server-Side Files

Caslib

In-Memory Space

| I _
Data Source \SHDAT server-side files
PROC CASUTIL;

LOAD CASDATA="source-table-name"”
<INCASLIB="caslib"> <OUTCASLIB="caslib">
<CASOUT="target-table-name">
<PROMOTE | REPLACE> <option(s);

QUIT:

Gsas

The CASUTIL procedure always uses the active caslib. As a best practice, always specify
the caslib explicitly with the INCASLIB= and OUTCASLIB= options.

By default, the in-memory table will have the same name as the original file, but you can
use the CASOUT= option to specify a differentname.

Let’s consider the sales.xlsx file that exists in the data source of Lynn’s personal
caslib. Lynn creates an in-memory session-scope table, salesxlsx, and investigates the
table’s descriptor portion. This is a table that others will need to access. When Lynnis
happy with the contents of the session-scope table, she uses the PROMOTE statement
to create a global-scope table in the public caslib so that other users can use the in-
memory table.

Here is the code to create an in-memory session-scope table:

proc casutil;
load casdata="sales.xlsx" incaslib=""casuser"
outcaslib=casuser
casout=""salesxlsx" replace;

contents casdata="'salesxlsx'" i1ncaslib="'casuser';
run;

10

The CASUTIL Procedurs

Table Information for Caslib CASUSER({lynn)

Number MNumber NLS Promoted Repeated
Table Name of Rows of Columns Indexed Columns enceding Created Last Modified Table Table View Source Name So
SALESXLSX 63 9 0 utf8 2020-02-18T21:44-52-05:00 2020-02-18T21:46:52-05:00 No No No sales xlax [

Detail Information for salesxlsx in Caslib CASUSER(lynn).

Mumber

of Active Variable Blocks Memory Blocks Memory Blocks Memory Index Compressed Comprassion
Mode Blocks Blocks Rows Datssizs Dstasize Mspped Msppsd Unmappsd Unmappsd Allocsted Allocstsd Size Siz= Ratio
ALL 1 163 8838 1782 0 0 0 0 8840 0 0
Column Information for SALESXLSX in Caslib CASUSER[lynn}
Format Formatted Format Format
Column Length Name Length Width Decimsl
Employes ID doub 8 BEST 12 0 0
First Name 10 8
Last Nams 128
Gender 13
Salary 8 BEST 12
Job Title 148 14
Country 2 2
Birth Dats doubls 8 DATE
Hire Dsts double 8 MMDDYY

Display 9: Output from PROC CASUTIL

Examine the results to see the descriptor portion of the salesxlsx in-memory table.
This is a session-scope table as noted by the value of No for Promoted Table. Also
note that when the salesxlIsx table was stored in CAS, the character values were
convertedto the VARCHAR data type.

Here is the code to create salesxlsx as a global-scope table in the public caslib:
proc casutil;

promote casdata="salesxlsx' incaslib=""casuser"
outcaslib="public" casout="'salesxlsx";

list tables incaslib="public";
quit;

The CASUTIL Procedure

Caslib Information

ersonal o
Hidden No
Transient lo

The CASUTIL Procedure

Table Information fer Caslib Public

Number Number MNLS Promoted Repeatsd
[Table Name of Rows of Columns Indexed Columns encoding Created Last Modified Takle Table View Source Name Source Caslib Compressed
ALESKLSX &3 g 0 utf-8 2020-02-18T21:46:52-05:00 2020-02-18T21:50:17-05:00 Ve Mo Mo saleslax CASUSER(lynn) No

Display 10: Results Showing the In-Memory Tables in the Public Caslib

11

3. MODIFYING SAS PROGRAMS TO RUN IN SAS VIYA

SAS DATA Step

Does the same data step syntax work for in-memory data in CAS?

Yes, we just need to
consider how the
data is processed, in
either a single
thread or multiple

DATA Step
threads.

Gsas

3.1 LOADING SERVER-SIDE FILES INTO CAS AND PROMOTING TABLES

When a DATA step is executed in Base SAS, it runs in a single thread on the SAS
Workspace Server. Processing data in a single thread reads data sequentially, one row at
a time.

SAS Viya enables data to be divided and processed simultaneously on multiple threads.
When a DATA step executesin CAS, each thread executes the program statements on its
data and returns the results to the controller.

The threads might receive different amounts of data, and might complete their processing
and return the results in a seemingly random order. SAS Viya reassembles the results.
We'lllook at examples where the parallel processing is transparent to the user. The only
difference you'll see is faster execution. We'll also look at situations where you, as the
programmer, need to take additional action to summarize the results from the threads.

SAS Viya DATA Step Processing

Massively Parallel Processing

Threads can

= receive different amounts of
data

= complete processing and B
return results to the server
controller at different times.

Server Worker

D

DATA step

-‘/
7
am
il
8o

DATA step

DATA step

6sas

Let’s compare Base SAS execution with that of SAS Viya.

Here is the code to run Base SAS running a simple program in Base SAS using a single
thread:

data _null_;
put ""Processed on
run;

threadid= _nthreads_=;

12

The THREADID_ value is 1, which indicates that the DATA step processed in SAS is a
single thread. The value of _NTHREADS _is 1, which indicates that there is one thread
available in the Base SAS session for processing the code.

73 data _null_;
74 put "Processed on " _threadid = _nthreads =;
75 run;

Processed on _THREADID =1 _NTHREADS_ =1

Display 11: Log Indicating Single-Thread Processing in the Base SAS Session

Here is the code to run a DATA Step in the CAS session:

data null_/sessref="MySession';
put "Processed on ' _threadid = nthreads =;
run;

The first note confirms that the DATA step was executed in CAS.

One big difference is the fact that _ THREADID__is equal to different values for each row
in the log. The threads operate independently. Therefore, the log messages were
generated by each thread at slightly different times. The values represent the thread on
which the DATA step was executed in the CAS session. There are 16 threads available
(_NTHREADS_=16). In this execution of the code, thread 3 completed the executionfirst,

and then thread 8, and so on.

If you run the program multiple times, you might get a different order each time that the
program runs. This is exactly what we want to happen when a program is executedin
multiple threads. Otherwise, the performance gains by threading are lost if the DATA step
were to somehow synchronize the output to the log.

NOTE: Running DATA step in Cloud
Analytic Services. Processed on
THREADID=3 _NTHREADS_=16
Processed on _THREADID_ =8
NTHREADS=16 Processed on
THREADID=5 _NTHREADS_=16
Processed on _THREADID_=7
NTHREADS=16 Processed on
THREADID=4 _NTHREADS_=16
Processed on _THREADID_ =9
NTHREADS=16 Processed on
THREADID=1 _NTHREADS_=16
Processed on _THREADID_=15
NTHREADS=16 Processed on
THREADID=11 _NTHREADS_=16

Display 12: Log Indicating Multi-Thread Processing in the CAS Session

13

3.2 MODIFYING DATASTEP CODE TO RUN IN SAS VIYA: NEW VARIABLES

Sometimesto get the DATA step to processin CAS, it's as simple as modifying the library
reference in the DATA statement and the SET statement to use a caslib. When both the
output and input tables are CAS tables, the DATA step processesin CAS.

Let's look at a DATA step that creates a variable conditionally using a SELECT statement.
We will modify the Base SAS DATA step to run in multi-threaded environment in CAS.
Before the program can run in CAS, ensure that the SAS table mysas.customers is
loaded into CAS memory as global-scope table mycustomers in Lynn's casuser caslib.

73 data work.Departments;
74 set mysas.customers end=eof;
75 select(Continent);
76 when ('Africa', 'Asia')
77 Department="General Shoes";
78 when ("Oceania")
79 Department="Men's Shoes";
80 when ("North Aamerica”, "Europe)
81 Department="Women's Shoes";
82 otherwise Department='Unknown';
83 end;
84 keep City Continent Department;
85 if eof then put _threadid_= _N_=;
86 run;
THREADID=1 _N_=951669
NOTE: There were 951669 observations read from the data set MYSAS.CUSTOMERS.
NOTE: The data set WORK.DEPARTMENTS has 951669 observations and 3 variables.
NOTE: DATA statement used (Total process time):
real time 0.31 seconds
cpu time 0.31 seconds

Display 13: Log Showing Program runs in a Single Thread
Here is the code to modify a DATA step to runin CAS:

data casuser.Departments;

set casuser.mycustomers end=eof;

select(Continent);
when ("Africa®, "Asia”) Department="General Shoes";
when (*"Oceania'’) Department="Men®s Shoes";
when ('North America’™, "Europe'™) Department="Women®s Shoes';
otherwise Department="Unknown*;

end;

keep City Continent Department;
1T eof then

put threadid = N =;
run;

14

NOTE: Running DATA step in Cloud Analytic Services.
NOTE: The DATA step will run in multiple threads.
THREADID=3 _N_=60000

THREADID=12 _N_=59000

THREADID=1 _N_=60000

THREADID=7 _N_=60000

THREADID=6 _N_=60000

THREADID=15 _N_=59000

THREADID=9 _N_=59000

THREADID=10 _N_=59000

THREADID=13 _N_=59000

THREADID=16 _N_=58669

THREADID=2 _N_=60000

THREADID=14 _N_=59000

THREADID=11 _N_=59000

THREADID=4 _N_=60000

THREADID=5 _N_=60000

THREADID=8 _N_=60000

NOTE: There were 951669 observations read from the table MYCUSTOMERS in caslib CASUSER(lynn).
NOTE: The table Departments in caslib CASUSER(lynn) has 951669 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.19 seconds
cpu time 0.01 seconds

Display 14: Log Showing That the Program Runs in Multiple Threads

The data was distributed across the 16 threads in the CAS session. The results were
returned as each thread completed its processing. Thread three completed first after
processing 60000 rows, and then thread 12, and so on. If you were to add up all the
values of _N_, the sum would equal 951,669, which is the total number of rows that
were read from the casuser.mycustomers table. Also note that the first row value for
City listed in the casuser.Departments table is not the same as the first row returned in
work.departments.

15

3.3 MODIFYING DATASTEPCODE TO RUN IN SAS VIYA: BY STATEMENT

If you are using the DATA step to process in groups or merge data based on the value of
one or more variables, then you would have to first sort the data and then use the BY
statement and FIRST. and LAST. processing to identify the first and last row in each
group. Sorting can be a very resource intensive, especially with very large data sets, and
when the DATA step is processed in Base SAS, the rows are processed sequentially in a
single thread.

The default when data is loaded into CAS is to distribute the input data based on the
original order among the different threads or multiple machines. The DATA step is
executed among the different threads or on multiple machines.

When a BY statement is added to the DATA step, the rows are group based on the first BY
variable and then distributed across multiple threads or machines. And because the data is

distributed based on the value of the BY variable, PROC SORT is no longer necessary.

The DATA step with the BY statement executes on each thread. Results are returned as
each thread finishes processing. Thread 3 processes the DATA step and returns the results
first. The order might be different each time that the program executes.

DATA Step with BY-Group Processing
In CAS with BY Statement

Results are returned

&CAS as each thread

finishes processing.

DATA
step

0

BY statement

osas

Here is the code to create a table with the total cost for each continent:

proc sort data=mysas.customers out=customers;
by Continent;
run;

data work.CityTotals;
set customers;
by Continent;

iT first_Continent then TotalCost=0;
TotalCost+Cost;

if last.Continent then output;
keep Continent TotalCost;
format TotalCost dollarl5.2;
run;

16

Coentinent TetalCost

Africa $&87,056.20

1

2 Asia $125,583.80
3 Europe $50,600,011.32
4 Horth America $1%,518,2%4.50
5 Oceania $4,666,453.04

Display 15: Output Data for Work.citytotals Showing Values Ordered by

Continent

Here is the code to run in CAS in multiple threads:

data casuser.CityTotals;
set casuser.mycustomers;
by Continent;

if first.Continent then TotalCost=0;
TotalCost+Cost;

if last.Continent then output;
keep Continent TotalCost;

format TotalCost dollarl5.2;
run;

Continent
Europe

Africa

Asia

rorth America

o A

B QOceania

TotalCost
$60,600,011.32
Sa7,096.20
$125,583.80
$1%8,518,2594.50
$4,666,453.04

Display 16: Same Results for TotalCost but Rows Not Returned in Sorted Order

by Continent

17

CONCLUSION

This paper attempted to showcase the power of SAS Viya and CAS from assigning libraries,
to moving data and manipulating it. Performance benefits were highlighted so that readers
weighing options can perhaps begin to consider SAS Viya for their daily data work.

ACKNOWLEDGMENTS

The author is grateful to the many SAS users that have entered her life. Charu is grateful to
the SAS Global Forum User Committee for the opportunity to present this paper. She would
also like to express her gratitude to her manager, Stephen Keelan, without whose support
and permission this paper would not be possible.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Charu Shankar

SAS Institute Canada, Inc.

Charu.shankar@sas.com
https://blogs.sas.com/content/author/charushankar/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

REFERENCES

CAS Concepts

https://go.documentation.sas.com/?docsetld=calserverscas&docsetTarget=n05000viyaserv
ers000000admin.htm&docsetVersion=3.4&locale=en

An Introduction to SAS Viya 3.4 Programming
https://go.documentation.sas.com/api/docsets/pamdiff/3.4/content/pamdiff.pdf

Differencesin the SAS®9 and SAS Viya 3.1 Platforms
https://go.documentation.sas.com/api/docsets/whatsdiff/3. 1/content/whatsdiff. pdf?locale=
en#nameddest=n0evbdlhaOclgvnlsbz5yag06xi6

SPRE (SAS Programing Runtime Environment)
https://communities.sas.com/t5/SAS-Communities-Library/Deploying-the-SPRE-in-SAS-
Viva-3-4/ta-p/602891

SAS Cloud Analytic Services 3.1: Language Reference
https://go.documentation.sas.com/api/docsets/casref/3.1/content/casref.pdf?locale=en#na
meddest=p05ccny5glgvwan19mkisxi8z1jk

18

https://blogs.sas.com/content/author/charushankar/
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/api/docsets/pgmdiff/3.4/content/pgmdiff.pdf
https://go.documentation.sas.com/api/docsets/whatsdiff/3.1/content/whatsdiff.pdf?locale=en#nameddest=n0evbd1ha0clqvn1sbz5yag06xi6
https://go.documentation.sas.com/api/docsets/whatsdiff/3.1/content/whatsdiff.pdf?locale=en#nameddest=n0evbd1ha0clqvn1sbz5yag06xi6
https://communities.sas.com/t5/SAS-Communities-Library/Deploying-the-SPRE-in-SAS-Viya-3-4/ta-p/602891
https://communities.sas.com/t5/SAS-Communities-Library/Deploying-the-SPRE-in-SAS-Viya-3-4/ta-p/602891
https://go.documentation.sas.com/api/docsets/casref/3.1/content/casref.pdf?locale=en#nameddest=p05ccny5glgvwan19mkisxi8z1jk
https://go.documentation.sas.com/api/docsets/casref/3.1/content/casref.pdf?locale=en#nameddest=p05ccny5glgvwan19mkisxi8z1jk

