

1

Paper SAS 5332-2020

Coding in SAS® Viya®

Charu Shankar, SAS Institute Inc.

ABSTRACT

This hands-on workshop is for users who want to take advantage of the boost in processing
speed for Base SAS programs executing in SAS Viya. This paper covers using the power of
SAS Cloud Analytic Services (CAS) to access, manage, and manipulate in-memory tables.
The purpose of this paper is to support users in their ability to get started with coding in
SAS Viya as they transition from coding in Base SAS programs. Users learn to perform three

simple yet important tasks to get comfortable with the language of SAS Viya: connect to the
CAS LIBNAME engine for data transfer between SAS and CAS; load data to a caslib and
process data in CAS; and modify SAS programs to run in SAS Viya.

INTRODUCTION

SAS Viya is a cloud-enabled, in-memory analytics engine that provides quick, accurate, and

reliable analytical insights. The latest enhancement of the SAS Platform, SAS Viya is an
open, cloud-enabled, analytic run-time environment with a number of supporting services.
One of those supporting services is SAS Cloud Analytic Services, or CAS. CAS provides a
powerful in-memory engine that delivers blazing speed to accurately process your big data.
It uses scalable, high-performance, multi-threaded algorithms to rapidly perform analytical

processing on in-memory data of any size. Data used in this paper can be downloaded from this
Github Repository https://github.com/CharuSAS/CodingInSASViya.

Terminology

File is used to refer to the source data that is in a caslib’s data source. For a caslib that
uses a path-based data source, this is natural. For a caslib that uses a database as a data
source, the tables in the database are referred to as f iles.

Table is used to refer to in-memory data. After a f ile (using the preceding definition) is
loaded into the server, it is referred to as a table.

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

5

SAS Viya on the SAS Platform

z

SAS Cloud Analytic Services (CAS)

SAS Platform

• an open, cloud-enabled, analytic run-time environment

SAS Viya

in-memory
engine

fast
processing

data of
any size

https://github.com/CharuSAS/CodingInSASViya

2

CAS - in SAS Viya, SAS Cloud Analytic Services (CAS) is the star of the show, providing
lightning fast analytics of in-memory data for SAS Visual Analytics and other software

offerings.

SPRE - Foundation SAS, the long-time workhorse of SAS analytics is also offered, referred
to as the SAS Programming Runtime Environment (SPRE). SPRE provides a user interface
and data processing environment for executing classic SAS program code. It offers the

Foundation SAS software that we're all familiar with, including Base SAS, SAS/ACCESS
engines, and more, as well as the SAS Studio web application.

SAS Viya is not a replacement for SAS®9. You can still leverage your SAS programming
knowledge and make modifications to existing SAS code to enable it to run in SAS Viya.

SAS Programming Interfaces: SAS Studio Login

SAS Studio is the SAS language code editor in SAS Viya. With the latest release of SAS

Viya, you can also use SAS Enterprise Guide 7.15 and SAS 9.4M5 to submit code to CAS.

Launch Google Chrome. Click the SAS Viya tab below the address bar and select SAS
Studio. Sign in to SAS Studio with the following credentials:

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

6

SAS Viya on the SAS Platform
SAS Viya and SAS®9

SAS Viya

SAS®9

One SAS
Platform

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

8

SAS Viya Programming Process
Use the SAS Code That You Are Familiar with

SAS code

User ID Password

lynn Student1

3

1. CONNECT TO CAS

After a CAS session starts, you can write code and submit CAS-enabled procedures.

1.1 CONNECT TO CAS SERVER

Here is the code to connect to the CAS server:

Display 1: Log showing That the CAS Session MYSESSION Started Successfully

1.2 ACCESSING CASLIBS

A caslib is a container for both the f iles in the caslib’s data source and the in-memory tables
that you load from the data source.

Here is the code to list caslibs:

caslib _all_ list;

NOTE: Action caslib LIST completed for session MYSESSION.

82 caslib _all_ list;

NOTE: Session = MYSESSION Name = CASUSER(lynn)
 Type = PATH

 Description = Personal File System Caslib
 Path = /opt/sas/viya/config/data/cas/default/casuserlibraries/lynn/

 Definition =
 Subdirs = Yes

 Local = No
 Active = No

 Personal = Yes
NOTE: Session = MYSESSION Name = Formats

 Type = PATH
 Description = Stores user defined formats.

 Path = /opt/sas/viya/config/data/cas/default/formats/
 Definition =

 Subdirs = No
 Local = No

 Active = No

 Personal = No

Display 2: Log Verifying That Casuser Is the Active Caslib

NOTE: The session MYSESSION connected successfully to Cloud Analytic Services

server.exnet.sas.com using port 5570. The UUID is f000e610-2a3a-b249-9a7a-645688943631. The

user is lynn and the active caslib is CASUSER(lynn).

NOTE: The SAS option SESSREF was updated with the value MYSESSION.

NOTE: The SAS macro _SESSREF_ was updated with the value MYSESSION.

NOTE: The session is using 0 workers.

NOTE: 'CASUSER(lynn)' is now the active caslib.

NOTE: The CAS statement request to update one or more session options for session MYSESSION

completed.

cas mySession sessopts=(caslib=casuser timeout=1800 locale="en_US");

4

Here is the code to list the f iles in casuser, which is the default caslib or active caslib:

proc casutil;

 list files;

quit;

On the Results tab, observe that the sales.xlsx f ile is listed.

Here is the code to create a new caslib:

caslib mycas path="/workshop/casfiles";

Display 3: Log to Verify That MYCAS Is the Active Caslib

In the navigation pane, select Libraries  My Libraries. The mycas library is not visible.
By default, the caslibs do not show up in the Libraries tree in SAS.

Here is the code to assign a new caslib:

caslib _all_ assign;

In the navigation pane, select Libraries  My Libraries. The mycas library should be

visible. Using the CASLIB statement with the ASSIGN option and the _ALL_ keyword assigns
SAS library references for existing caslibs for visibility in the Libraries tree in SAS Studio.
Because CAS processes only in-memory tables, tables are loaded into memory before they
are used in CAS.

1.3 CHANGING AN ACTIVE CASLIB

There is only one active caslib at a time in a CAS session. The active caslib is where data is
processed by default.

When Lynn starts a session, her personal caslib, casuser(Lynn), is def ined by default and
is the active caslib. She can use it to access the f iles in the directory /home/lynn/casuser.

Copyr ight © SAS Inst i tute Inc. Al l r ights reserved.

20

Active Caslib
Ways to Change the Active Caslib

Clear the active caslib.

caslib

The default caslib
becomes active again.

active caslib

Casuser(Lynn)

caslib

Mycas Public

Lynn

NOTE: 'MYCAS' is now the active caslib.

NOTE: Cloud Analytic Services added the caslib 'MYCAS'.

NOTE: Action to ADD caslib MYCAS completed for session MYSESSION.

5

If Lynn wants to access data in another directory, she can use the CASLIB statement, and
the newly defined caslib becomes the active caslib.

If Lynn wants to access data in another directory, she can use the CASLIB= option in the
CAS statement, and the referenced caslib becomes the active caslib.

When Lynn clears the active caslib, her default caslib becomes active again.

2. LOAD DATA TO A CASLIB AND PROCESS DATA IN CAS

In the f irst section, we started a CAS session and accessed a caslib. Because CAS can
process data only in its in-memory space, the next step is to load your f ile into memory.
Subsequently, data updates and analysis can begin.

Source data f iles mapped to a caslib are referred to as server-side f iles. These files can be
rapidly loaded into the caslib’s in-memory space for processing. After a f ile is loaded into
memory, it is referred to as a table. These CAS tables are in-memory copies of the
associated CAS f ile. The source data f iles remain on disk and unchanged.

6

2.1 SESSION SCOPE VERSUS GLOBAL SCOPE

In-memory tables can have either session scope or global scope.

By default, in-memory tables have session scope. A session-scope table is accessible only in
the CAS session where it was created. It's only visible to the user who created it. Session-
scope tables are useful for ad hoc data access and analysis because they don't require
access control checks or locking for concurrent access.

A session-scope in-memory table exists only for the duration of the session. When the CAS
session ends, the table is dropped.

To share data across your sessions or with other users, create a global-scope table, also
called a promoted table. You can promote a table when you load a f ile into memory or
promote an in-memory session table. After a session-scope table is promoted, it's visible
across CAS sessions.

Unlike session-scope tables, global-scope tables are not dropped from memory when a CAS
session ends. The table is still available to other sessions and will be available in the next
CAS session that the user starts.

To understand the concepts of session versus global scope, we will load the client-side
SAS data set, mysas.employees, into Lynn’s personal caslib. Lynn creates an in-
memory session-scope table, myemployees. This is a table that others will need to

access. When Lynn is happy with the contents of the session-scope table, she uses the
PROMOTE statement to create a global-scope table in the public caslib so that other

users can use the in-memory table.

Here is the code to load data, create a session scope table, and promote it:

proc casutil;

 load data=sashelp.cars outcaslib=casuser

 casout="MyCars" replace;

 load data=mysas.employees outcaslib="casuser"

 casout="MyEmployees" promote ;

quit;

proc casutil;

 list tables incaslib="casuser";

quit;

The log shows that CAS processed the code, and the results show specific metadata

about the myemployees and mycars tables.

7

Display 4: Metadata about the myemployees and mycars Tables

The mycars table is session scope (Promoted Table=No) and is dropped from memory
when the CAS session ends.

The myemployees table is global scope (Promoted Table=YES) and is not dropped
from memory when the CAS session ends.

2.2 LOADING CLIENT-SIDE DATA INTO CAS

Files of any type that are not mapped to the caslib are called client-side f iles. You load f iles
into the in-memory space in CAS using your client software. To load a client-side SAS data
set that resides in a SAS library, we use the CASUTIL procedure LOAD statement with the
DATA= option.

We proceed to load the client-side SAS data set, mysas.employees (mysas is a local
SAS library), into a CAS table in Lynn’s personal caslib and investigate the contents of the
in-memory table.

Here is the code to load mysas.employees into a CAS table in Lynn’s personal caslib:

proc casutil;

 load data=mysas.employees casout="Employees" replace;

quit;

In the navigation pane, in the SAS Studio tree, expand Libraries  My Libraries 

CASUSER to verify that employees was loaded into the casuser caslib.

8

Here is the code to verify that employees was loaded into the casuser caslib:

proc casutil;

list tables incaslib="casuser";

quit;

Display 5: Log Indicating That CAS Processed the Code

The employees table is session scope (Promoted Table=No) and is dropped from
memory when the CAS session ends.

Display 6: Results Showing Specific Metadata about the Employees Table

Here is the code to generate a report of the descriptor portion of the in-memory table:

proc casutil;

 contents casdata="employees" incaslib="casuser";

quit;

proc contents data=casuser.employees varnum;

run;

Let’s compare the results. SAS Viya has additional data types. The data type DOUBLE
maps to a SAS numeric data type. SAS Viya also supports CHAR, which is the SAS
character f ixed-width data type, and the VARCHAR data type, which is a variable-
length character f ield.

proc casutil;

NOTE: The UUID 'f019e5a3-36e9-3642-a00b-7e6ecb5a35dd' is connected using session MYSESSION.

list tables incaslib="casuser";

NOTE: Cloud Analytic Services processed the combined requests in 0.003401 seconds.

quit;

9

Display 7: Partial PROC CASUTIL Results

Display 8: Partial PROC CONTENTS Results

10

2.3 LOADING SERVER-SIDE FILES INTO CAS AND PROMOTING TABLES

What if you need to load a server-side f ile that's stored in the caslib’s data source? You

use the CASUTIL procedure LOAD statement with the CASDATA= option.

The CASUTIL procedure always uses the active caslib. As a best practice, always specify

the caslib explicitly with the INCASLIB= and OUTCASLIB= options.

By default, the in-memory table will have the same name as the original f ile, but you can

use the CASOUT= option to specify a different name.

Let’s consider the sales.xlsx f ile that exists in the data source of Lynn’s personal
caslib. Lynn creates an in-memory session-scope table, salesxlsx, and investigates the
table’s descriptor portion. This is a table that others will need to access. When Lynn is
happy with the contents of the session-scope table, she uses the PROMOTE statement
to create a global-scope table in the public caslib so that other users can use the in-

memory table.

Here is the code to create an in-memory session-scope table:

proc casutil;

 load casdata="sales.xlsx" incaslib="casuser"

 outcaslib=casuser

 casout="salesxlsx" replace;

 contents casdata="salesxlsx" incaslib="casuser";

run;

11

Display 9: Output from PROC CASUTIL

Examine the results to see the descriptor portion of the salesxlsx in-memory table.
This is a session-scope table as noted by the value of No for Promoted Table. Also

note that when the salesxlsx table was stored in CAS, the character values were
converted to the VARCHAR data type.

Here is the code to create salesxlsx as a global-scope table in the public caslib:

proc casutil;

 promote casdata="salesxlsx" incaslib="casuser"

 outcaslib="public" casout="salesxlsx";

 list tables incaslib="public";

quit;

Display 10: Results Showing the In-Memory Tables in the Public Caslib

12

3. MODIFYING SAS PROGRAMS TO RUN IN SAS VIYA

3.1 LOADING SERVER-SIDE FILES INTO CAS AND PROMOTING TABLES

When a DATA step is executed in Base SAS, it runs in a single thread on the SAS
Workspace Server. Processing data in a single thread reads data sequentially, one row at
a time.

SAS Viya enables data to be divided and processed simultaneously on multiple threads.
When a DATA step executes in CAS, each thread executes the program statements on its
data and returns the results to the controller.

The threads might receive different amounts of data, and might complete their processing
and return the results in a seemingly random order. SAS Viya reassembles the results.
We'll look at examples where the parallel processing is transparent to the user. The only
difference you'll see is faster execution. We'll also look at situations where you, as the
programmer, need to take additional action to summarize the results from the threads.

Let’s compare Base SAS execution with that of SAS Viya.

Here is the code to run Base SAS running a simple program in Base SAS using a single

thread:

data _null_;

put "Processed on " _threadid_= _nthreads_=;

 run;

13

The _THREADID_ value is 1, which indicates that the DATA step processed in SAS is a

single thread. The value of _NTHREADS_ is 1, which indicates that there is one thread

available in the Base SAS session for processing the code.

Display 11: Log Indicating Single-Thread Processing in the Base SAS Session

Here is the code to run a DATA Step in the CAS session:

data _null_/sessref="MySession";

put "Processed on " _threadid_= _nthreads_=;

run;

The f irst note confirms that the DATA step was executed in CAS.

One big difference is the fact that _THREADID_ is equal to different values for each row
in the log. The threads operate independently. Therefore, the log messages were
generated by each thread at slightly dif ferent times. The values represent the thread on
which the DATA step was executed in the CAS session. There are 16 threads available
(_NTHREADS_=16). In this execution of the code, thread 3 completed the execution f irst,

and then thread 8, and so on.

If you run the program multiple times, you might get a different order each time that the
program runs. This is exactly what we want to happen when a program is executed in

multiple threads. Otherwise, the performance gains by threading are lost if the DATA step

were to somehow synchronize the output to the log.

Display 12: Log Indicating Multi-Thread Processing in the CAS Session

73

74

75

data _null_;

put "Processed on " _threadid_= _nthreads_=;

run;

Processed on _THREADID_=1 _NTHREADS_=1

NOTE: Running DATA step in Cloud

Analytic Services. Processed on

THREADID=3 _NTHREADS_=16

Processed on _THREADID_=8

NTHREADS=16 Processed on

THREADID=5 _NTHREADS_=16

Processed on _THREADID_=7

NTHREADS=16 Processed on

THREADID=4 _NTHREADS_=16

Processed on _THREADID_=9

NTHREADS=16 Processed on

THREADID=1 _NTHREADS_=16

Processed on _THREADID_=15

NTHREADS=16 Processed on

THREADID=11 _NTHREADS_=16

Processed on _THREADID_=10

NTHREADS=16 Processed on

THREADID=13 _NTHREADS_=16

Processed on _THREADID_=2

NTHREADS=16 Processed on

THREADID=14 _NTHREADS_=16

Processed on _THREADID_=12

NTHREADS=16 Processed on

THREADID=6 _NTHREADS_=16

Processed on _THREADID_=16 _NTHREADS_=16

14

3.2 MODIFYING DATA STEP CODE TO RUN IN SAS VIYA: NEW VARIABLES

Sometimes to get the DATA step to process in CAS, it's as simple as modifying the library

reference in the DATA statement and the SET statement to use a caslib. When both the

output and input tables are CAS tables, the DATA step processes in CAS.

Let's look at a DATA step that creates a variable conditionally using a SELECT statement.

We will modify the Base SAS DATA step to run in multi-threaded environment in CAS.
Before the program can run in CAS, ensure that the SAS table mysas.customers is

loaded into CAS memory as global-scope table mycustomers in Lynn's casuser caslib.

Display 13: Log Showing Program runs in a Single Thread

Here is the code to modify a DATA step to run in CAS:

data casuser.Departments;

 set casuser.mycustomers end=eof;

 select(Continent);

 when ('Africa', 'Asia') Department="General Shoes";

 when ("Oceania") Department="Men's Shoes";

 when ("North America", "Europe") Department="Women's Shoes";

 otherwise Department='Unknown';

 end;

 keep City Continent Department;

 if eof then

 put _threadid_= _N_=;

run;

15

Display 14: Log Showing That the Program Runs in Multiple Threads

The data was distributed across the 16 threads in the CAS session. The results were
returned as each thread completed its processing. Thread three completed f irst after
processing 60000 rows, and then thread 12, and so on. If you were to add up all the
values of _N_, the sum would equal 951,669, which is the total number of rows that
were read from the casuser.mycustomers table. Also note that the f irst row value for
City listed in the casuser.Departments table is not the same as the f irst row returned in
work.departments.

NOTE: Running DATA step in Cloud Analytic Services.

NOTE: The DATA step will run in multiple threads.

THREADID=3 _N_=60000

THREADID=12 _N_=59000

THREADID=1 _N_=60000

THREADID=7 _N_=60000

THREADID=6 _N_=60000

THREADID=15 _N_=59000

THREADID=9 _N_=59000

THREADID=10 _N_=59000

THREADID=13 _N_=59000

THREADID=16 _N_=58669

THREADID=2 _N_=60000

THREADID=14 _N_=59000

THREADID=11 _N_=59000

THREADID=4 _N_=60000

THREADID=5 _N_=60000

THREADID=8 _N_=60000

NOTE: There were 951669 observations read from the table MYCUSTOMERS in caslib CASUSER(lynn).

NOTE: The table Departments in caslib CASUSER(lynn) has 951669 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 0.19 seconds
cpu time 0.01 seconds

16

3.3 MODIFYING DATA STEP CODE TO RUN IN SAS VIYA: BY STATEMENT

If you are using the DATA step to process in groups or merge data based on the value of

one or more variables, then you would have to f irst sort the data and then use the BY
statement and FIRST. and LAST. processing to identify the f irst and last row in each
group. Sorting can be a very resource intensive, especially with very large data sets, and
when the DATA step is processed in Base SAS, the rows are processed sequentially in a

single thread.

The default when data is loaded into CAS is to distribute the input data based on the
original order among the different threads or multiple machines. The DATA step is

executed among the different threads or on multiple machines.

When a BY statement is added to the DATA step, the rows are group based on the f irst BY
variable and then distributed across multiple threads or machines. And because the data is

distributed based on the value of the BY variable, PROC SORT is no longer necessary.

The DATA step with the BY statement executes on each thread. Results are returned as
each thread f inishes processing. Thread 3 processes the DATA step and returns the results

f irst. The order might be different each time that the program executes.

Here is the code to create a table with the total cost for each continent:

proc sort data=mysas.customers out=customers;

 by Continent;

run;

data work.CityTotals;

 set customers;

 by Continent;

 if first.Continent then TotalCost=0;

 TotalCost+Cost;

 if last.Continent then output;

 keep Continent TotalCost;

 format TotalCost dollar15.2;

run;

17

Display 15: Output Data for Work.citytotals Showing Values Ordered by

Continent

Here is the code to run in CAS in multiple threads:

data casuser.CityTotals;

 set casuser.mycustomers;

 by Continent;

 if first.Continent then TotalCost=0;

 TotalCost+Cost;

 if last.Continent then output;

 keep Continent TotalCost;

 format TotalCost dollar15.2;

run;

 Display 16: Same Results for TotalCost but Rows Not Returned in Sorted Order

 by Continent

18

CONCLUSION

This paper attempted to showcase the power of SAS Viya and CAS from assigning libraries,

to moving data and manipulating it. Performance benefits were highlighted so that readers

weighing options can perhaps begin to consider SAS Viya for their daily data work.

ACKNOWLEDGMENTS

The author is grateful to the many SAS users that have entered her life. Charu is grateful to
the SAS Global Forum User Committee for the opportunity to present this paper. She would

also like to express her gratitude to her manager, Stephen Keelan, without whose support

and permission this paper would not be possible.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Charu Shankar
SAS Institute Canada, Inc.
Charu.shankar@sas.com

https://blogs.sas.com/content/author/charushankar/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

REFERENCES

CAS Concepts

https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaserv
ers000000admin.htm&docsetVersion=3.4&locale=en

An Introduction to SAS Viya 3.4 Programming
https://go.documentation.sas.com/api/docsets/pgmdiff/3.4/content/pgmdiff.pdf

Differences in the SAS®9 and SAS Viya 3.1 Platforms
https://go.documentation.sas.com/api/docsets/whatsdiff/3.1/content/whatsdiff.pdf?locale=
en#nameddest=n0evbd1ha0clqvn1sbz5yag06xi6

SPRE (SAS Programing Runtime Environment)
https://communities.sas.com/t5/SAS-Communities-Library/Deploying-the-SPRE-in-SAS-
Viya-3-4/ta-p/602891

SAS Cloud Analytic Services 3.1: Language Reference

https://go.documentation.sas.com/api/docsets/casref/3.1/content/casref.pdf?locale=en#na
meddest=p05ccny5glgvwan19mkisxi8z1jk

https://blogs.sas.com/content/author/charushankar/
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=calserverscas&docsetTarget=n05000viyaservers000000admin.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/api/docsets/pgmdiff/3.4/content/pgmdiff.pdf
https://go.documentation.sas.com/api/docsets/whatsdiff/3.1/content/whatsdiff.pdf?locale=en#nameddest=n0evbd1ha0clqvn1sbz5yag06xi6
https://go.documentation.sas.com/api/docsets/whatsdiff/3.1/content/whatsdiff.pdf?locale=en#nameddest=n0evbd1ha0clqvn1sbz5yag06xi6
https://communities.sas.com/t5/SAS-Communities-Library/Deploying-the-SPRE-in-SAS-Viya-3-4/ta-p/602891
https://communities.sas.com/t5/SAS-Communities-Library/Deploying-the-SPRE-in-SAS-Viya-3-4/ta-p/602891
https://go.documentation.sas.com/api/docsets/casref/3.1/content/casref.pdf?locale=en#nameddest=p05ccny5glgvwan19mkisxi8z1jk
https://go.documentation.sas.com/api/docsets/casref/3.1/content/casref.pdf?locale=en#nameddest=p05ccny5glgvwan19mkisxi8z1jk

