

1

Paper 5170-2020

Customized Output with the SAS® Config File: Always Useful
but Seldom Used

Zeke Torres, Code629 Chicago Illinois

ABSTRACT
The SAS® config file is powerful and useful. In this example, we show how to customize the
names of the Log and List files from the code we run, and obtain a useful new name as the
result.

The new name of a log file might look like this:

20180904_hhmm_userID_name-of-code-that-was-run.log.

The benefit is that when one user or a team of users builds the code, everyone can see its
progress. In this way, collaborating is simplified and results are easier for colleagues to
share and consume. This is a mock or proposed file name. This macro is intended to
inspire you to see what additional SAS System values to add to your style.

INTRODUCTION
The typical problem encountered is we can run our SAS code and get useful output:
LOG/LST (List) – but after we run it again – that original output is gone. Its overwritten.

Or if one of our co-workers or team members runs the same code – again – now our
LOG/LST become harder to pin down – who – ran that code.

This is a solution meant to utilize the SAS Configuration file and a set of SAS Macros to
improve the name of the LOG/LST output.

There are already ways to customize those – with SAS options. I will quickly cover those
here. But this is more of a recommended methodology for you to consider. My reason for
employing this technique is because often I am searching for information in many LOG/LST.
Either to debug, help someone debug (Myself, Team Member, Client) or to track progress on
a “Project/Build” of work that is critical to gauge where and how things are. Especially when
one or more work on something like this.

In this years paper I will outline a GIT methodology you can consider. Which outlines how
we would structure our folders, code and logs.

HOW TO QUICKLY IMPLEMENT – PROOF OF CONCEPT

THE CODE PART IS EASY

Quickest way to this Solution: See the Appendix, Copy Code, run code - go!

THE GIT PART TAKES PRACTICE

Learning GIT will take a small amount of effort. Think of it as an investment.

2

OVERVIEW OF REQUIREMENTS

USER SKILL LEVEL REQUIREMENTS

The intended reader and user should have a basic or better comprehension of:

• SAS Macro Language

• Operating System Basics and User Permissions

• SAS Config File

• PDV

• Data _null_

• SYSPARMS

• Data Used for this Paper/Topic

Extensive knowledge of these items is not a pre-requisite. Great – but not needed.

The paper should provide a useful template for someone to observe those elements working
together. Being familiar with those elements is simply going to determine how quickly and
easily the reader/user can take this code configure it to work and get it customized to their
situational needs.

SAS MACRO LANGUAGE SKILLS

There are uses of SAS Macro language. The code I’ve crafted works well as a macro and is
called in during compile. A reader/user of this paper/code should have an intermediate to
advanced understanding of SAS Macros. A reader with less knowledge should still be able
to use this method and code – but I highly recommend using the References section to
improve your SAS Macro Language skills before engaging in this type of overall technique.

OS BASICS AND USER PERMISSIONS

This method works on Windows/Linux/Unix – however – each of those environments brings
with it overall considerations on “where” you can locate your SAS Config. As well as how or
where you can actually execute this macro to bring about the desired results.

This means – that if your SAS environment is highly regimented and secure – you could still
get some of this to work. But not as much as say – if you had better “Admin” privileges.
Another consideration for readers – this is ideal when you can work with your IT/Admin and
implement it across your team. Reducing the need for individual users to modify or change
SAS config etc.

The reader of this paper should understand that SAS Config files and updating should be
done after back up copies have been made.

SAS CONFIG FILE

I will give brief explanations on how to locate your SAS Config file. The References section
will also cover some papers by other authors that describe this in more/better detail.

The important part of this paper and SAS Config is to allow you (the user) to tailor a set of
options that are available when SAS compiles code. Once SAS starts to run the code -we’ve
lost the chance to use those options. In my opinion – the careful and strategic use of the
SAS Config options at compile – is one of the many ways coding in SAS is really powerful.

This paper does not do the SAS Config and Compile topic justice.

I encourage you to become more familiar with those parts of SAS.

3

DATA _NULL_

We will use Data _NULL_ and create macro variables. Then recreate or re-use those macro
variables and values. It would be useful for a reader to be familiar with SAS Macro
Language and the Data _NULL_ topic – but its not a prerequisite. The use and
implementation of this code will provide a reader with a good example of how this works.

SYSPARMS

SAS Sysparms will be used by this process and code. We will capture the values from those
fields within the SAS System/Session and revise, repurpose them to suite our needs.

DATA USED FOR THIS PAPER/TOPIC

We don’t have heavy requirements for data here. The data I’ve used in the paper will come
from “SASHELP” libraries.

THE “BEFORE” – OUR PROBLEM SCENARIO
The scenario is: One user has a SAS job.

Its kept by the user in a folder – and s/he is the only person on the team.

For this section of the SAS paper - Its called “monthly_sales.sas”.

When this job is run – it will produce:

“monthly_sales.log”

“monthly_sales.lst”

Display 1. Log and LST Output

SAS generates the name of the LOG/LST automatically during compile based on the
(dot)sas code file name. Which is typically useful.

Right now we know good useful facts – the OS is informing us:

 When it was run – We have a Date/Time Modified (here from Windows)

 We know “who” because we know its ONE person (us).

 We know the job.

That’s about it useful – for now but vulnerable. What if our SAS work is evolving and being
updated, changed as we go. What if the code for this topic needs to be run multiple times?

 Once for one region again for a different region?

 Or again after totals or data from the source are complete.

 Any other reason – including debugging or optimization.

4

PROBLEMS COME UP QUICK

What results is the loss of useful details. First – when we “rerun” the logs and list we
currently have – will be over-written. Gone.

What if I’m trying to evaluate its performance and compare?

I would have to go to this location and ‘rename’ these (dot)log and (dot)lst. Thereby
protecting them. It can get very annoying – quickly.

What if for data refreshing purposes the first and subsequent times its run – are equally
valid? Well I would lose any history or reference of a successful process with each pass.

This problem – becomes that much more severe once we expand the team to more than
one person.

RESULTS OF NEW NAMING
Before we had one person working on that code. Now we have more.

This example assumes we have gathered the logs and list files and code together.

Its meant to demonstrate the concept of the file name method.

In this scenario ASMITH ran the code on 2/13 at 3:47pm. S/He found an issue and called
for help to solve it. ZTORRES ran some tests on 2/13 at 6:47pm. The two solved the
problem.

We can then see the code was again run by both on 2/15 and the relevant details.

Display 2 – Example of Using Macro

Just by using this method we can obtain useful facts.

We can learn “who” ran the code. Was it for “test” or “production”?

Those facts are on the – left – of the name of the code.

What was the “code” they ran? We want to keep that.

5

The items to the right – are facts about what was “in” the code we wish to display at this
high level. So in the example of jobs run on 2/15 – we can see some were by region. In
this example: West, East.

BENEFITS
We can now get more details about work, from any number of users.

In a chronological way. Informative about relevant elements of the work being done.

We can easily track down what log/lst to explore if an issue was reported by someone.

We no longer have to manually go in and rename log/lst – or even remember to do that.

CODE OVERVIEW
Before our program is executed or run. We have places where we can customize options.

Typical places to do that are: Config, Autoexec and even in the code itself – after its
started.

But the earliest place we can adjust those options are at compile – the greatest available
options are during the SAS engine itself compiling the (dot)sas code we are running.

Its at that stage that the options we wish to modify get set.

If we try to modify the print/log file names from sas within the code – we cant fully adjust
to suite our needs. Its too late in the compile/system options process.

The options SAS provides with “PRINTTO” are simply too far along the compiler process.

MACRO CODE LOCATION AND PLACEMENT
This macro needs to be located somewhere that you can access and run it. It could be in
the directory or folder you are working from. Or you could store it in a catalog or other
remote folder.

But it must be called in before SAS actually executes code.

6

See Appendix 2

The code is ideal for Windows/Linux Batch processing. One item to be aware of is the
“Slashes” and the differences between: Windows/Unix.

You may need to make minor configuration to the macro where I’ve made comments about
this.

You may also want to find the SAS executable for your location.

In the example for this document I’ve taken a Windows variation. The exact location of
your SAS.EXE will be something to confirm and verify.

EXECUTION OF MACRO
Here are the basic – long version of the execution parms to get full use of the macro.
For this section of the paper my SAS code is called: “try.sas”
On Command line you will run:

Display 3 – Example 1 of Syntax to Type on Command Line

The “SYSPARM” value can be adjusted to include facts we want in revised file name.

Example 2 of Syntax to Type on Command Line

In Example 2: I’ve set “SYSPARM” value to “PROD_ZT”.

This will allow the output to return a more useful value as part of the filename.

Notice how we “AUTOEXEC” the macro that updates the log/list.

We need to do this at this stage so that all the correct and updated/revised values for PROC
PRINTTO (LOG/LST) are available as early as possible in the compile stage.

My suggestion are as follows:

1. Explore this macro by using other values in SYSPARM:
a. Like: PROD_OTHERUSER, PROD_SSMITH, PROD_MonthlyREport_ etc.
b. Or: CR_SOMEUSER, TEST_MonthlyReport_ etc.
c. This macro is set to two variations: PROD and CR (code review)
d. This way I Know if something was done for production or code review.

2. If you put NO value in SYSPARM – then the macro does not execute.
3. The use of SYSPARM with: PROD, CR as prefix enables it.
4. You will observe that for a SAS code named: “try.sas” the following occurs.

a. The true TRY.SAS log – still comes up – try.log
b. The “try.log” is NOT the full log – its only the log up and thru where the PROC

PRINTTO was initiated with the new values.
c. The rest of the List/log AFTER the PROC PRINTTO – are under the new name.

In my own work flow I’ve enabled more “SAS SYSTEM” features.

Like: UserId’s and others. My goal with the paper was to demonstrate the process and
revised naming convention that is possible and why I find it useful.

I encourage you to explore adding other SAS System variables as you desire.

>"C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -SYSIN try.sas -
autoexec "zt_log_list_prep_3139.sas" -sysparm "prod"

7

What I typically do with my work in my local folders is copy or push the logs and list over to
a team folder. But I don’t have any issues about filenames or history because I’ve got a
more useful set of log/list filenames.

OVERVIEW OF IDEAL FOLDER LAYOUT
In order to maximize the components mentioned here and work with a GIT repository we
ideally have a standard of folder layouts and where we keep elements of a project. This
section of the paper details a method I’ve found useful.

Image 4 – Overview of Ideal Folder Layouts for Projects.

In this example “Image 4” here are the components.

1. Some Path – is the Drive, Shared Folder or Source location where our project code
is. For the moment lets focus on our own local machine before we expand this out to
our team locations. This folder will likely have many projects and other folders.

2. Projects – Would be stored each in their own folder. In this image named A, B, C, D.
The other parts of this image in light blue describe ONE specific project. Project A.
The idea is that ALL other projects we work on will have the same fundamental
layout and composition.

3. Project_A – This folder is where our GIT repository is based and initiated from. Each
project (A, B, C, D) will have GIT initiated at this level/stage. And there would be
specific elements in GIT to ignore based on your team rules. But one item that
someone will notice is that there is apparently “data” in a project folder that has GIT
tracking it. This folder would be a symbolic LINK. Actual data would ideally and for
many circumstances NOT be in a GIT repository. Please read and explore more on
rules and standards for GIT and how, when to store specific types of data. Overall
this author is stating to this audience in this medium that unless there is a specific
reason and justification – data should NOT be tracked in a GIT repository. It is the
intent to only enable this via a Symbolic Link, Shortcut Method (depending on your
OS) and thus to the software and user the data folder appears in the “project”.
However – our GIT ignore file will have specific settings to omit these mentions from
the GIT commit process. Note that depending on what your team defines as
“output”. This “output” folder where it has “data” may also be a shortcut and not
part of the GIT repository. Therefore also ignored like the “source_data” folder.

8

4. Within a PROJECT – in this example Project_A. We will have the following folders…
a. Code_Folder – Will hold All folders that deal with syntax and code.
b. Logs – will hold facts about jobs, code that ran. Example: SAS Logs, LST. It

is possible that your team decides to treat the “LOGS” folder as a Data folder
and would also link this via shortcuts, symbolic links. Especially if the facts
are meant to be shared among more people. Another consideration is that
often the log,lst type of output produces facts and/or details which we may
not want in our GIT repository due to size, data privacy etc. So this is
something you will need to determine and discuss.

c. Output – Where output of the work we have done is kept. This may have
the same “rules” as mentioned for the “Source_data” folder. This folder may
be a symbolic link, shortcut and NOT hold actual data for our GIT repository.

d. Source Data – As previously mentioned this would not be actual data. It
would be a symbolic link, shortcut or virtual link to data. That link, path,
shortcut would be omitted from GIT via the ignore file in the git repository.

5. Code_Folder – Holds our syntax for any variety of languages. One key folder to
highlight is the “universal” folder. Within the Code_Folder is where we want to store
only “code”, “logic” things that act against our “data”. The layout here becomes
valuable since now we introduce a “UNIVERSAL” folder. In this folder we would
ideally keep facts that are “code” but can be used by any language. Examples
explained next.

6. Our Code Folder has: SAS, Python, R, SQL and “universal”. In our world we often
have any number of language syntax to manage and store. So by allowing each to
exist at the same level allows consistent “path naming” and referencing in the overall
project folder schema. The ideal rule is that we want each syntax to stay within its
“folder”. However we want to put “facts” that are universally consumable by any
syntax IN the “universal” folder. An example of this is – a CSV file with State
Abbreviations and State Name. It can be used by SAS, Python, SQL, R and
consumed or referenced. SAS can use it in a “proc format” via a “%include”. SQL,
Python can use in a Join or Merge. And it reduces the number of places where its
now being kept. As before each language (or team) would have had a separate table
of State facts. Now we have ONE.

BENEFITS OF THIS FOLDER LAYOUT
Our Team Server will hold our local copy of this project work. This ideally is a repository
managed by a team leader who initiates and creates consistent folders, names and does the
initial GIT repository configuration.

Image of Team Server Image of “Coder” and their local paths

9

OVERALL TEAM DISTRIBUTION

Image of team distributed Code work – With GIT Remote Repository

What we want is our team to work on the language and syntax they need to change,
update, create etc. And commit, push, pull to and from our team remote repository.

Remember – our rules dictate in some fashion that our “data” will not be kept in our remote
repository. So things like our LOG, Output, Source Data will be kept and reached via
symbolic link, short cuts. This means our “team” will have to put the logs, list into a secure
location – the Team Project folder.

However – with our new naming convention of this Config – we have a way to SEE those
results and WHO created them.

As everyone produces output, logs, lst etc – and uses GIT – the facts and documentation
get centralized into the correct places.

ADDITIONAL IDEAL GOALS
In an ideal scenario the common goal for the teams would be to identify MORE code that is
currently in SAS, Python, R, SQL – to be converted into something that can sit in the
language independent “universal” folder. This way we have removed the single ownership
of code and logic from ONE language and made it “universally” consumable and useable by
“any” language.

Another viable process to explore comes from Code Review and Peer Review. By deploying
this method and concept we want to encourage “everyone” to participate in code review. Its
important that CR does NOT become – Criticism. We want to share knowledge and protect
our team and work.

10

IDEAL CONCEPTS FOR CODE OR PEER REVIEW
One of the most important rules I recommend is that our code should be reviewed and open
to anyone to review. This also includes the person with the least knowledge of any syntax.
Our teams come with a wide range of proficiency diversity in any one or more language.

If the person on our team with the least syntax knowledge: …

 Can Not - Understand the code being submitted for review

 Can Not – Functionally follow the code

 Feels the code is lacking sufficient documentation. Either comments, documented
approvals for changes, logs, valid output - anything.

 Feels the code is wrong

These members are ideal to reject the code. They will likely be the ones tasked with
maintaining the code in the future – or soon. The input they provide is important.

If we allow them to participate in CR/PR – regardless of syntax domain mastery – the
feedback they provide is invaluable to everyone.

And again – do not let CR/PR become “bash the coder time”.

The questions and items the team highlights are inherently topics to resolve before we
approve the code to be part of our overall team ecosystem.

CONCLUSION
This method of creating logs and lists, storing them and using a standardization method to
keep team work easier – is my recommendation. I’ve employed this method in places
where even if I am working as an individual – it still helps me keep track of the progress of
work.

THE FINE PRINT
This software is provided to you "as is" without any warranties, express or implied, including
but not limited to implied warranties or merchantability and/or fitness for a particular
purpose. The Author, SAS Institute and its licensor(s) disclaim any liability connected with
the use of the software and/or proposed code solution presented. The Author, SAS Institute
offers no technical support for the software and/or proposed code solution presented.

I recommend that you first make useful copies of your code, config and data before
engaging in modifications of those in your environment.

REFERENCES
Kahane, Dalia “SAS® Data Step – Compile, Execution, and the Program Data Vector”
NESUG 2011 https://www.lexjansen.com/nesug/nesug11/ds/ds04.pdf

https://communities.sas.com/t5/SAS-Communities-Library/The-SAS-Supervisor/ta-
p/429216

ACKNOWLEDGMENTS
I want to thank some awesome co-workers that tolerated my numerous attempts to show
them this code and equally tolerated me getting it to work easy enough for anyone to use.

Kay Whitman MPA Healthcare

Bryn David NORC

11

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Zeke Torres

Code629 Inc

zt (at) code629 (dot) com

GIT: https://github.com/zeketorres

LinkedIn: https://www.linkedin.com/in/zeketorres

SASENSEI: https://sasensei.com/user/zeketorres

QR CODE LINKS

ABOUT THE AUTHOR
I am a data engineer. The roles I play are preparing and constructing complex data for
analytic and statistical use. I enjoy designing and building data driven decision support
systems. A typical role for me is that of: data management, reporting and complex
analytics. Including the governance of metadata.

I translate complex business definitions, requirements and convert them into algorithms and
code. Then tackle the some of the toughest, ugliest most unstructured data (lots of it) and
make it valuable and useful.

Crafting end to end "Data to Decision" solutions that matter to an organization. I bridge the
gap between the IT DBA's and Statistics Quantitative Analysts. My main tool of choice is
SAS®. I'm also learning Python and enjoying it.

One of my hobbies are Local SAS User Groups. I lead the Chicago Area SAS Users Group –
WCSUG.com – if you are ever in the area stop by and say hello.
#sas #sasmacros #sasconf ig #sasusergroups #wcsug #mwsug #scsug #sesug #sasv9 #saseg #config #git #sasgithub #sasgit #vrdc #sashealthdata #cms # sysparm #sasoptions

TRADEMARK CITATIONS
SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

12

APPENDIX 1: CODE

/**
* PROGRAM NAME : log_list_prep.sas
* DESCRIPTION : prepare and modify log and list
* AUTHOR: zeke torres
* LinkedIn: https://www.linkedin.com/in/zeketorres/
**/

/* obtain the path and number of sections of that path
**/
data _null_;
 cpy_sys_var1 ="%sysfunc(getoption(SYSIN))";
 call symput('cpy_sys_path' ,cpy_sys_var1);
run;

/* pick up the sysparm value from the command line this enables
* the rest of the code to be OFF by default and only if a user
* enters the correct value below will the log/list file be copied
* to the project folder
**/
data _null_;
 prod="&sysparm";
 prod =lowcase(prod);
 prod =compress(prod);
 prod_key=0;
 /*** we want to create two types of namig conventions – prod
 *** and CR (code review) for prod or CR - we simply need the
 *** leading values in sysparm to match
 ***/
 if prod in :('yes','live','prod','production','y','1') then do;
 prod_key=1;
 end;
 if prod in :('code','codereview','cr','2') then do;
 prod_key=2;
 end;
 call symput('cpy_sys_prod',prod_key);
run;

/*** we are going to prep and clean up the sas code path and
*** sas code execution .sas ***/
data _null_;
 /** get the file name from the path ***/
 length temp_file_name $700.;
 length temp_file_name2 $700.;
 length code_name $250.;
 temp_file_name ="&cpy_sys_path";

 /** need to reverse to isolate the actual name ***/
 temp_file_name_r=reverse(temp_file_name);
 temp_file_name2 =scan(temp_file_name_r,1,'\'); /** you may need to
adjust the back/forward slash to your os **/

 /** reversing back to final output name ***/
 temp_file_name2=reverse(temp_file_name2);
 temp_file_name2=left(temp_file_name2);

13

 temp_file_name2=compress(temp_file_name2);
 temp_file_name2=trimn(temp_file_name2);
 xlen=length(temp_file_name2);
 code_name=substr(temp_file_name2,1,250);
 code_name=scan(code_name,1,'.');

 zalen=(length(temp_file_name)) - xlen;

 fnl_path=substr(temp_file_name,1,zalen);
 fnl_path=compress(fnl_path);
 fnl_path=compbl(fnl_path);
 call symputx('cpy_fnl_path',fnl_path);
 call symputx('cpy_code_name_x',code_name);
run;

%macro dnull(job_class=);

/*** we will bring together the facts we need and append to
 *** revised log and list names ***/
 data _null_;
 /* get the system date and set format for
 * it as yyyymmdd10
 *************************************/
 length tdate 8.;
 format tdate yymmdd10.;
 tdate="&sysdate9"d;
 length fdate $20.;
 fdate=tdate;
 fdate=put(tdate, yymmdd10.);
 fdate=tranwrd(fdate,"-","_");
 fdate=compress(fdate,"_");

 /* get the system time and compress
 ***************************/
 length stime $15.;
 stime="&systime";
 stime=compress(stime,":");

 /* prepare the new log and list names using the new
 * prefix code name now add that to the final string
 * of chars to get a useable set of file names
 * I am using a long var width to ensure I capture all byte
 * values. This is not intended to hold data ever
 * beyond the null step and macro var
 **/
 length code_list $3500.;
 length code_log $3500.;
 cpath="&cpy_fnl_path";
 cfile="&cpy_code_name_x";
 csval="&sysparm";
 code_list ="'" !! cpath !! fdate !! "_" !! stime !! "_" !!
csval !! "_" !! cfile !! ".lst" !! "'";
 code_log ="'" !! cpath !! fdate !! "_" !! stime !! "_" !!
csval !! "_" !! cfile !! ".log" !! "'";
 code_list =compress(code_list);
 code_log =compress(code_log);
 call symputx('cpy_sys_list',code_list);

14

 call symputx('cpy_sys_log' ,code_log);
 run;

 /* execute the new file names for both log and list */
 proc printto print = &cpy_sys_list new;
 run;

 proc printto log = &cpy_sys_log new;
 run;
%mend; *** end dnull macro;

%macro loopy();
 %if &cpy_sys_prod. =1 %then %do;
 %dnull(job_class=);
 %end; /** end of the criteria if this is prod or not **/

 %if &cpy_sys_prod. =2 %then %do;
 %dnull(job_class=_CR);
 %end; /** end of the criteria if this is prod or not **/
%mend;

%loopy();

APPENDIX 2: HOW TO EXECUTE
On Command line:

 "C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -SYSIN try.sas -autoexec
"zt_log_list_prep_3139.sas" -sysparm "prod"

The “SYSPARM” value can be adjusted to include facts we want in revised file name.

