
 1

Paper 5145 – 2020

Urge to MERGE? Maybe You Should UPDATE Instead
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT:
The DATA step's UPDATE statement is similar to the MERGE, but it has some helpful built-in logic of which many
users of SAS may not be familiar. In most cases, this built in logic can yield much simpler DATA steps. This paper
sheds light on some of these build-in features and takes a step-by-step approach to showing you how to take
advantage of this power that is already there.

INTRODUCTION:
Several years ago, I was at a client's site to do some SAS training. One morning as I was about to enter the
classroom, I was met by some of the company's SAS 'gurus'. They were trying to write a program to do some
UPDATING, but they were writing a DATA step with a MERGE statement to do the job. They could not get the
program to work properly and were asking for my help. It was an impressive looking DATA step; all four pages
looked like it could work, but it was not doing what they wanted. My first reaction was this program could be written
with an UPDATE statement instead of a MERGE statement and it would be less complex. They could have written a
four statement program to accomplish their task instead of a four page program. The UPDATE statement has a lot
of logic built into it. My client did not know this and was trying to write a DATA step using the MERGE statement and
re-create the logic that is already available in the UPDATE statement.

The UPDATE statement performs a special type of merge. It's function is to update a master file, in the
form of a SAS dataset, by applying transactions (observations from another SAS dataset). The UPDATE
statement is used to do the following:

 change data values for variables in the master SAS dataset
 add observations to the master SAS dataset.

The typical syntax for the UPDATE statement is:

The rules for using the UPDATE statement are:

 only two datasets can appear on the UPDATE statement
 the MASTER file must be listed first
 a BY statement containing the ID-Variable must be used
 both datasets must be sorted by the BY variable
 the MASTER file must have only one observation per unique value of the BY variable.

The following examples will use these two simple datasets from the insurance field. The Policy_Holder dataset is
the master file while the New_Information dataset serves as the transaction file.

 UPDATE master-file transaction-file ;
 BY id-variable ;

 2

Figure 1.

The first example is to update the master file (Policy_Holder) with the transaction file (New_Information) which has
new information on the policy holders. A simple four statement DATA Step will get the job done.

Figure 2.

Using the ODS TEXT destination (the Output window), the PROC PRINT report looks like this...

Figure 3.

Notice that the missing values from the transaction data set do NOT overwrite the non-missing values from the
master file.

What if someone wants to have their information updated by NOT displaying their phone number or other
information? In other words, what if we WANT missing values in the transaction file to overwrite non -
missing information in the master file? There is a special MISSING statement that is used in the DATA step to
identify a character that represents a special kind of missing value.

The next task is to overwrite non-missing values in the master-file with missing values from the transaction file.
Notice the MISSING statement.

 3

Figure 4.

In this example, the MISSING statement identifies the '_' as the special missing value that is in the transaction file
and is used to overwrite non-missing values from the master file. The output for this DATA step is on the next page.

Figure 5.

The output shown here illustrates that missing values in the transaction file did, in fact, overwrite non-missing values
in the master file.

The next example illustrates updating a bank account and illustrates another major advantage of using the UPDATE
statement. This example uses the following two datasets. In this example, Account is the master dataset while
Transaction contains observations that will update the master file.

 Figure 6.

Notice the single observation for acct_id of S11010 in the master file and duplicate rows for that same acct_id in the
transaction file. What we need to do is apply both rows in the transaction file to the single
row in the master file that matches the value. Also, in this example, we need to deploy the logic of adding

 4

the amount to the balance if the transaction type is 'Credit', and subtracting the amount from the balance if the
transaction type is 'Debit'. Here is the DATA step to accomplish this task.

 Figure 7.

Notice the two SUM statements embedded in the IF-THEN_ELSE statements. The first SUM statement
is used in the traditional sense, it is adding amount to balance. The second SUM statement is used to subtract
amount from balance.

RENAMING VARIABLES WHILE UPDATING:

A master file (HEALTH) contains health information on it's members. There is a transaction file (FITNESS)
that contains new values for WEIGHT. The challenge is that in BOTH datasets the variable that contains the
individuals weight is called the same thing. By default, the values of WEIGHT in the transaction file will over write
the values of WEIGHT in the MASTER file; which is usually what you want. However, in this situation, we want to
end up with two weight variables, one to reflect the OLD weight value, and one to reflect the NEW weight values.

Figure 8.

What is needed to allow us to do this is the ability to rename variables so that there is NO data over write in the
Program Data Vector. What we need to do is to map the WEIGHT values from the master file to a variable named
ORIG_WEIGHT so that the WEIGHT values from the transaction file go into a different column, thus preventing data
over write. See Figure 9.

proc sort data=transaction;
 by Acct_Id;
run;
data New_Master (keep = Acct_Id Balance);
 update Account Transaction;
 by Acct_Id;
 if type = ‘Credit’ then balance + amount;
 else if type = ‘Debit’ then balance + - amount;
 run;
proc print data=New_Master;
 title ‘New_Master Data Set’;
run;

 5

Figure 9.

Is there a way to do this in the DATA step while we are UPDATING at the same time? Of course the answer is Yes.
In writing a program to accomplish the above task, the first thing we need to do is to sort both datasets by ID, as
shown by the Proc SORT steps here.

Figure 10.

The next step, is to write the following DATA step to do the UPDATING and renaming:

.

Figure 11.

Notice the RENAME= option on the UPDATE statement. This option allows the values of WEIGHT from the
HEALTH dataset to be written to the ORIG_WEIGHT ''slot" on the program data vector, thus preventing data from
being overwritten. Notice the results below.

 6

Figure 12.

COMPARING UPDATE WITH MERGE:

The following two datasets are used to show the comparison between the UPDATE statement and the MERGE
statement. Notice:

 the missing values in the New Information dataset.
 two rows for P_Num 11010 in the New Information and only one row for that P_Num in the master file
 . (Policy Holders).

Figure 8.

Write two identical DATA steps to process these two datasets, except use an UPDATE statement in one and a
MERGE statement in the other.

Figure 9.

The output is shown on the next page.

 7

Figure 10a.

Figure 10b.

In the dataset generated by the UPDATE statement, missing values in the transaction dataset did not overwrite non-
missing values in the master dataset. And, both observations for P_Num 11010 in the transaction dataset are
applied to the single row for P_Num 11010 in the master dataset.

CONCLUSION
There are some powerful features written into the UPDATE statement that make it very useful in 'updating' SAS
datasets. This paper has presented some of the major benefits of the UPDATE statement as well as compare and
contrast it to the MERGE statement.

More examples may be shown during the presentation of this paper.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The author can be reached at:
Ben Cochran
The Bedford Group
3224 Bedford Avenue
Raleigh, NC 27607
(919) 741-0370
bentcochran@gmail.com

mailto:bentcochran@gmail.com

