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ABSTRACT  

Despite the amount of quantitative research that exists in the social and behavioral 

sciences, many graduate programs do not offer classes focused on the multitude of steps 

necessary to manage quantitative datasets.  Instead, this skill is often learned through trial 

and error with the beginning SAS user having to use multiple resources, including, but not 

limited to the plethora of proceedings papers from SAS Global Forum as well as regional 

users’ groups as well as other SAS friendly resources such as UCLA’s Institute for Research 

and Digital Education and SAS publications. Although these resources are incredibly useful 

when a SAS user knows what procedure he/she needs, they are less useful for the novice 

analyst who does not know where to begin. The focus of this paper is to help guide the 

novice user through common data management techniques to transform raw, messy data 

into an analytic dataset. This paper contains information on data management processes as 

basic as getting an external data set into SAS to more advanced techniques such as 

conducting exploratory factor analysis and creating composite variables. We illustrate the 

various processes using Wave 1 public use data from the National Longitudinal Study of 

Adolescent to Adult Health (Add Health).  

Keywords: data cleaning, data management, data manipulation  

INTRODUCTION  

The goal of data cleaning is to ensure that the data used within the analytic process 

provides an accurate representation of the constructs that are being examined.  Datasets 

usually contain numerous irregularities such as outliers or codes to indicate various forms of 

missingness (i.e, truly missing, skip patterns, refusals, etc.), which can significantly impact 

the analytic outcomes if the irregularities are unknowingly included.  However, through data 

management and manipulation techniques, datasets can be cleaned to produce high-quality 

results that have incorporated better analytic decisions and outcomes due to a more 

representative and accurate dataset. Thus, the purpose of this paper is to provide a 

roadmap for data cleaning, management, and manipulation using a multitude of SAS® 

features and procedures. Although there are multiple ways to accomplish many tasks in 

SAS®, the methods and approaches shared in this paper are those that are commonly used 

in the social and behavioral sciences and are intended for those new to managing data.  

Illustrations of SAS procedures and techniques included throughout this paper will come 

from Wave 1 public use data from the National Longitudinal Study of Adolescent to Adult 

Health (Add Health; www.cpc.unc.edu/projects/addhealth). By using publicly available data, 

readers can download the data and work through the examples provided. Also, although we 

use a large national dataset throughout the paper, please remember that the techniques 

included in the paper are relevant to both large national datasets as well as smaller, locally 

collected data.  Messy data occur everywhere!!  

Topics covered in this paper include (a) the importance of knowing ones data and consulting 

(or creating) codebooks and users manuals; (b) how to read data into SAS; (c) how to 

http://www.cpc.unc.edu/projects/addhealth
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suppress formats; (d) how to examine the contents of a dataset; (e) how to merge 

datasets; (f) the importance of checking the log throughout the data management process; 

(g) how to convert missing data to SAS system missing; (h) how to create an age variable 

from interview and birth dates; (i) renaming variables; (j) dummy coding; (k) reverse 

coding; (l) how to create composite variables and assess reliability; (m) how to center 

variables to ensure all variables have a meaningful zero; (n) how to assess missing data 

mechanisms; and (0) how to create an analytic data set, including dividing data into explore 

and holdout samples.   

KNOW THY DATA!  

One of the most important steps that should be conducted prior to analyzing any dataset is 

reviewing the codebook and other documentation associated with the dataset that is 

selected for use. When working with national datasets such as Add Health, ECLS-K, NLSY, 

etc., codebooks and other documentation such as users’ manuals and/or appendices are 

included when you download the data.  However, if you are working with either primary 

data that you or a colleague collected, these materials might not exist.  If that is the case, 

then the first step in the data management process is to create them.   

Codebooks typically contain the information on how each variable in the dataset was 

collected – the exact wording used on the survey as well as the response options as 

presented in the survey and how each response option has been coded in the dataset. 

Codebooks often also contain a frequency table that depicts item response rates and data 

missingness characteristics. Appendix A contains a sample of the Add Health variables that 

are used throughout the paper – the information provided was taken directly from the Add 

Health codebook.  By reviewing these items and available responses, the researcher will be 

informed as to whether the item is categorical or continuous, or if there are specific criteria 

that may exclude participants from responding.  Further, the characteristics of item 

missingness are also included within the frequency table, which may be the result of 

unknown source of missing, participants refusing to answer an item, participants not 

knowing the answer to the question, or participants not being selected to answer a specific 

item (e.g., a legitimate skip).  

For Add Health data, there are two codebooks – a PDF version that you get when you 

download the data (this is discussed more in the next section) and an online codebook – 

Add Health Codebook Explorer - 

http://www.cpc.unc.edu/projects/addhealth/documentation/ace/tool/. Whereas the 

Codebook Explorer is useful once you have identified the variables of interest for your study, 

it is less useful when you are first learning about the data and the variables that are 

available to you.   

Users’ manuals and other supplemental materials often include details on how the study 

was conducted (e.g., how were participants recruited/selected, what were the study 

inclusion criteria, etc.), copies of all questionnaires as they were administered to 

participants as well as information on any data management that the owners of the data 

have already conducted (i.e., a composite measure of socioeconomic status that was 

created from education and income variables in the dataset), scale reliability and validity, 

and when working with nationally representative data that used complex sample design, 

information regarding the use of analytical variables such as weights, clustering, and 

stratification. We do not cover details on analyzing complex survey data, however, there are 

many terrific papers that provide this information (e.g., Berglund, 2009; D’Agostino 

McGowan & Toll, 2015; Lewis, 2010) 

When a researcher is working with a primary dataset and no documentation has been 

created, he/she should use the above information as a guideline for what to include in a 

http://www.cpc.unc.edu/projects/addhealth/documentation/ace/tool/
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codebook and users’ manual.  In doing so, remember that you need to create enough 

documentation that a person not involved in the research study can correctly use the data 

and be able to describe the details on all aspects of the study.    

GETTING DATA INTO SAS AND CREATING A WORKING 

DATAFILE  

Before managing your data, first you need to obtain it! Whereas Add Health data and 

corresponding documentation can be accessed from multiple sources 

(http://www.cpc.unc.edu/projects/addhealth/documentation/publicdata) from our 

experience, obtaining the data and documentation from the ICPSR is best: 

https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/21600/datadocumentation.    

For this paper, if you would like to follow the examples, go to the ICPSR link and download 

two datafiles:  DS1 Wave I: In-Home Questionnaire and DS2 Wave I: Public Use Contextual 

Database. The downloaded material will be in ZIP files. So, before you can access them, you 

need to unzip the files. Once each of the two ZIP files have been unzipped SAS C-

TRANSPORT files, as well as other study documentation including users’ manuals and 

codebooks, will appear. The SAS C-TRANSPORT files are named “21600-0001-Data.stc” 

(which is the In-Home Questionnaire) and “21600-0002-Data.stc” (which is the Contextual 

Database).  The C-TRANSPORT file type is common when downloading data from national 

research studies. The example below provides details on how to move from a TRANSPORT 

file to a sas7bdat SAS datafile. Reading other types of datafiles (Excel, SPSS, Stata, CSV, 

etc.) can be done using the Import Wizard.  Whereas we will focus on getting SAS C-

TRANSPORT files read into SAS, Matlapudi & Knapp (2012) provide illustrative examples of 

importing other types of data into SAS.   

SAS Code to read in the SAS C-TRANSPORT In-Home Questionnaire data: 

filename in "C:\Users\bellb\Documents\SESUG/21600-0001-Data.stc"; 

libname out 'C:\Users\bellb\Documents\SESUG'; 

proc cimport file=in library=out; run; 

 

In the above code, the FILENAME command is used to instruct SAS which datafile to read – 

you can see that the TRANSPORT file (21600-0001-Data.stc) is located on a computer on 

the C drive under user bellb, in the documents folder, in a subfolder called “SESUG”. When 

using the FILENAME command you need to provide the directory location of the stc file AND 

the name of the datafile.  Next, the LIBNAME command refers to the location on the 

computer where SAS will place the.sas7bdat datafile – in this example, it is the same 

location used in the  FILENAME command, however, it does not have to be if you were to 

want to save the .sas7bdat file in a different folder, you can do that.   

The PROC CIMPORT is the part of the code where the TRANSPORT file is converted to a SAS 

(.sas7bdat) file.  This code directs SAS to read the file specified above in the FILENAME 

(FILE=in) command and to put the converted datafile in the location specified in the 

LIBNAME command (library=out).    Using “in” and “out” as the names for the locations 

associated with the FILENAME and LIBNAME commands is arbitrary – you can use any 

“name” as long as it starts with a letter.  We use “in” and “out” to help illustrate that we are 

reading “in” the TRANSPORT datafile and then we are “out” putting the converted file. 

During the PROC CIMPORT process, SAS automatically names the newly created datafile – 

in this example the new SAS datafile is named “da21600p1.sas”. We recommend creating a 

copy of the datafile and giving it a more meaningful name.  

SAS Code to rename a permanent SAS datafile: 

libname AH 'C:\Users\bellb\Documents\SESUG'; 

options nofmterr; 

http://www.cpc.unc.edu/projects/addhealth/documentation/publicdata
https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/21600/datadocumentation
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data ah.inhome;set ah.da21600p1; run;  

 

In the code above, notice we list the new datafile name “ah.inhome” then the old datafile 

name “ah.da21600p1”. Think of this like the “Save As” function in Word – you take one 

datafile and you save a copy of it with a new name.  The OPTIONS NOFMTERR portion of the 

code is necessary to allow SAS to access the Add Health datafile. Like many national 

datasets, the Add Health data have user defined formats applied to them. You can access 

those format files if you want to, but, in our experience, that process is not easy given 

incompatibility issues between formats created in previous versions of SAS.  Thus, using the 

NOFMTERR option suppress the formats within the SAS datafile.  However, do not be 

concerned if you see a note about the formats in the log.  Also notice that we have named 

the location on the computer where our SESUG folder as AH – i.e., LIBNAME AH.  Again, 

using AH is arbitrary – you can use anything you wish as long as it starts with a letter.  For 

us, because we are working with Add Health data, AH seemed like a good option.  

Next, we want to create one master datafile that contains both the In-Home Questionnaire 

data and data from the Contextual data.  Before we can do that, we would repeat the steps 

above (i.e., converting the transport file to a SAS datafile and providing the SAS datafile 

with a meaningful name) using the Contextual Database instead of the In-Home 

Questionnaire data.  To conserve space, that code is not shown, but is provided in the SAS 

syntax file that is available from the authors listed in the CONTACT INFORMATION section at 

the end of the paper. After replicating the code for the Contextual data, we now have two 

SAS datafiles – ah.inhome (as created using the code above) and ah.contextual (code to 

create not shown).  The inhome datafile contains participant responses to all questionnaire 

items and the contextual datafile contains data about the areas in which the adolescent lives 

(e.g., Census data).   More details on the contents of both of these datasets are provided in 

their respective users’ manuals and codebooks, which were included in the ZIP files when 

the data were downloaded.   

Before merging the two datafiles, you should examine the contents of each dataset. PROC 

CONTENTS provides the user with information on the number of observations in a dataset, 

the number of variables in a dataset, variable names (and labels when provided), as well as 

the format of each variable (i.e., character or numeric).  Knowing how many observations 

and number of variables in each dataset is important to make sure that the merged datafile 

matches the details for each separate datafile.   

SAS code for examining the contents of each of our two datasets is below: 

proc contents data = AH.inhome; 

proc contents data = AH.contextual; run;  

 
Output 1 depicts partial output from PROC CONTENTS. Please note, the number of 

observations and variables is located in the upper righthand corner of the output. 
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Output 1. Partial Output from PROC CONTENTS of the AH.Inhome Data 

 

As shown in the PROC CONTENTS output (and reported in the Add Health codebook and 

users’ manual), the Participant ID variable in Add Health data is “AID” – this variable is the 

key linking variable across Add Health datasets (located in the Alphabetic List of Variables 

and Attributes section of the output).  This is important because this is the variable that will 

be used to merge the two datafiles into one.  To accomplish this, first you must sort each 

dataset by AID.  

SAS code to sort two data files:  

proc sort data = ah.inhome;by aid; 

proc sort data = ah.contextual;by aid; run; 

 

The PROC SORT procedure is a command that directs SAS to order or rank observations 

within a dataset by the values of a designated variable.  In this case, SAS is directed to 

order all observations by participant ID (BY aid) within each separate dataset.  Figure 1 

provides an example of how observations in In-home data (with variables I1, I2, I3, and I4) 

and observations in the Contextual data (with variables X1 & X2) are ordered by participant 

ID (AID).  The next step is to merge the two separate datasets into a singular dataset. 

 In-Home Data  Contextual Data  

 AID I1 I2 I3 I4  AID X1 X2  

 1      1    

 2      2    

 3      3    

Figure 1:  Illustration of Two Separate Datafiles Sorted by AID  

 

The MERGE procedure is a command that directs SAS to form a singular data set from 

multiple datafiles. Our example shows how to merge two files, but, you can merge as many 
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files as necessary. As long as each datafile has been sorted by the common/linking variable 

first.  

SAS code to merge two data sets:  

data ah.AH_Combined;  

merge ah.inhome ah.contextual;  

by aid; run; 

 

Notice that the MERGE command happens within a data step – that is, before we tell SAS 

which files to merge together, we must first provide a name for the merged datafile.  

Above, we have named the merged datafile “Combined” and it will be stored in the AH 

library.  After naming the merged dataset, SAS is being directed to combine (i.e., merge) 

ah.inhome and ah.contextual into AH_Combined. Notice that the code above has more than 

just the MERGE command -- the BY command is a critical part of the merging process. If 

you use the MERGE command without a “BY” statement, you will see an error in the log. 

Figure 2 shows how the two separate datasets shown in Figure 1 now appear in a single 

dataset. through the common variable AID (which again is the participant ID in the Add 

Health data). 

 

Combined Data  

AID I1 I2 I3 I4 X1 X2 

1       

2       

3       

Figure 2. Example of Newly Merged Datafile  

After processing the MERGE command, the user should check the log for potential errors 

and complete an additional PROC CONTENTS and review the output for successful creation 

of the combined datafile. Output 2 depicts the number of observations and variables for 

each pre-consolidated dataset as well as the newly created data set. At first, you might 

have expected to see 2826(32+2794) variables in the combined dataset, however, 

remember that AID is the same variable included in each of the original two files. Thus, 

after merging the dataset, AID is consolidated across both datasets into a single variable 

within AH_Combined (i.e., So, subtract one variable from the total and you arrive at 2825 

total variables).  Also, notice that the number of observations is consistent across all 

datasets. 

 

Inhome  Contextual  Combined 

  
 

Output 2: Partial Output from PROC CONTENTS Used to Check the Number of 

Variables and Observations after Merging Two Datasets  

 

The last step in creating a working dataset before cleaning data involves creating a dataset 

that contains only the variables that will be used in the analytic process.  As shown above, 
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AH_Combined has nearly 3,000 variables in it. Creating a smaller dataset that only contains 

variables that will be used in your analytic procedures not only speeds up processing, but 

also is necessary for some of the data cleaning procedures that are provided later in the 

paper.  

Code for creating a datafile that only contains variables of interest for a study is below: 

data AH.Combined_reduced_var;  

 set AH.Combined; 

   keep AID H1GI1M H1GI1Y BST90P19 imonth iday iyear 

  H1ED19 H1ED20 H1ED21 H1ED22 H1ED23 H1ED24 AH_PVT; run; 

 

The KEEP command within SAS is an option that allows users to retain selected variables 

when creating a new dataset. In the above code, the new dataset 

“ah.combined_reduced_var”  is a subset of ah.combined. Instead of containing nearly 3000 

variables, ah.combined_reduced_var contains 13 variables (i.e., the variables listed in the 

KEEP command).  

Once the reduced dataset is created, review the log to determine if the new dataset has 

been created without error.  Next, execute PROC CONTENTS on the new dataset to 

determine if the correct number of variables and observations have been included within the 

new dataset. The log will also inform you how many variables are retained in the new 

datafile. This verification process is conducted in the same way as verifying that the MERGE 

was completed correctly using the PROC CONTENTS function. 

CONVERTING MISSING DATA TO SAS MISSING NOTATION   

Encountering missing data is inevitable. Because missing data can be represented in 

numerous forms across datasets, the first step of converting missing data to a uniform 

representation for SAS processing is to review the codebook.  A sample of items taken 

directly from the Add Health codebooks is provided as an Appendix at the end of the paper.  

In reviewing the information, you can see variables H1ED19 - H1ED24 have eight 

responses; 1-5 represent actual responses to the items (strongly agree to strongly 

disagree) whereas 6-8 represent different types of missing data (refused, legitimate skip, do 

not know).  After reviewing the codebook, you should estimate frequency tables for each 

variable that will be used in their analyses – this allows you to compare the data to the 

information in the codebook and it provides baseline information that you will use 

throughout the data cleaning and management process to check that procedures execute 

correctly.  

Code for generating frequency tables for each of the variables in the reduced dataset is 

below: 

proc freq data = AH.Combined_reduced_var; 

tables H1GI1M H1GI1Y BST90P19 imonth iday iyear H1ED19 H1ED20 H1ED21 

H1ED22 H1ED23 H1ED24 AH_PVT; run; 

 
Output 3 depicts a frequency table for BST90P19. After examining the frequency table and 

the codebook, we know that variable BST90P19 has five possible responses, in which only 

responses 1-3 represent observations that will be included within the analytic process.  The 

other two responses (8 unstable estimates and 9 geocode missing) need to be converted 

into missing data using SAS system notation.  You would examine the frequency tables for 

each variable to determine which values are present in the data and need to be converted 

to missing.  
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Output 3.  Frequency Table for BST90P19 

 

There are two methods for converting missing data from numeric responses to “.”.  The first 

method uses the IF/THEN function, whereas the second method uses the ARRAY function.   

The code for using the IF/THEN function is below:  

data missing; 

 set AH.Combined_reduced_var; 

keep aid H1GI1M H1GI1Y BST90P19 imonth iday iyear AH_PVT; 

 If H1GI1M ge 96 then H1GI1M = .; 

 If H1GI1Y ge 96 then H1GI1Y = .; 

 If BST90P19 gt 3 then BST90P19 = .; run; 

 

In the code above, the first thing to notice is that we created a new dataset that we have 

called “missing”.  However, unlike other datasets that we have created, this dataset is not a 

permanent SAS datafile. Instead, it is a temporary/working dataset named.  We know the 

dataset is not a permanent SAS datafile because it is not linked to the AH libname.  As a 

temporary dataset, it is important to remember that it only exist in SAS’s memory – as soon 

as you close the SAS session you are working in, the temporary datasets are erased. You 

will see multiple parts of SAS code where temporary datasets are created. It is not required 

to use temporary datasets – anytime you need to create a new dataset, you can create 

permanent SAS datafiles, like we have done in the earlier examples. However, if you do 

that, than your libname location ends up with a lot of datasets that are not used to analyze 

your data.  

The IF/THEN syntax is a function that SAS uses to examine an expression in order to 

evaluate if the variable meets specified criteria, and if it does, change the observation of the 

variable to the specified value.  In the above code, observations that have values greater 

than or equal to 96, for variables H1GI1M and H1GI1Y, are converted to “.”. The ‘ge’ portion 

of the code is SAS notation for greater than or equal to. The ‘gt’ used with variable 

BST90P19 is SAS notation for greater than.  So, the last line of the code instructs SAS to 

convert all values greater than 3, for BST90P19, are converted to “.”.   

Output 4 depicts the frequency table for BST90P19 after the completion of the IF/THEN code 

above.  Here you can see that the 76 observations that were originally coded as 8 and 9 

now appear in the “Frequency Missing” at the bottom of the table.   
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Output 4.  Frequency Table for BST90P19 after Converting 
Missing Data Values 

Unfortunately, when using the IF/THEN statement, each individual variable must be entered 

on a line of syntax for SAS processing – when you are working with 20 or 30 variables, that 

is a lot of coding.  In those cases, you can write much less code by using the ARRAY 

function in SAS.  

An example of using the ARRAY function is below:  

data missing2; 

 set AH.Combined_reduced_var; 

 keep aid H1ED19 H1ED20 H1ED21 H1ED22 H1ED23 H1ED24;  

  array AH [*] _numeric_;   

  Do I = 1 to DIM (AH); 

  If AH[I] ge 6 then AH[I] = .;  

  End;  

 Drop I; run; 

 

In the most simplistic terms, the ARRAY function designates a set of variables to be 

manipulated – i.e., it is a way to automate the IF/THEN logic explained above. In the code 

above, after creating a new dataset that will contain the output from the ARRAY (i.e., 

missing2) the user states ARRAY, followed by a name for the ARRAY.   

In the example above, we have named this ARRAY “AH”. After designating the name of the 

array the user directs SAS on how many elements, or variables, should be included within 

the array. Although the user can list each of the variable names to include in the ARRAY, we 

have used a more efficient approach.  In the example above, after naming the array, the 

designation [*] _NUMERIC_ informs SAS that there are an unknown number of elements or 

variables ([*]), and that SAS needs to execute the AH ARRAY on all the numeric variables 

(_NUMERIC_) contained within the current temporary dataset missing2.  

The next subscript, (DO I = 1 TO DIM (AH)), basically directs SAS to process elements from 

the first element or variable (DO I = 1), to the last element or variable (TO DIM) within the 

named (AH)array. The “I” in this line ([I]) simply marks the beginning of a loop for SAS, 

which commands SAS to repeat a process until all designated elements are manipulated. 

The actual manipulation portion of this array is similar to using IF/THEN statements. As 

such, the code “IF AH[I] ge 6 THEN AH[I] = .” directs SAS to convert any values greater 

than or equal to six (AH[I] ge 6), among the numerical variables contained in the AH array, 

to missing (THEN AH[I] = .). The END command directs SAS that the array is being 

concluded, and DROP I removes the I from the output generated from executing the AH 
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array. Just as we did after using the IF/THEN approach to creating missing data indicators, 

if you use the ARRAY approach you need to run frequency tables for all of the variables that 

were included in the ARRAY to make sure that everything executed correctly.   

Note that when using the _NUMERIC_ option it is vital to make sure that the variables in the 

dataset are all applicable to the requested action. For example, in the AH ARRAY, notice that 

we also used a KEEP statement and limited the dataset to specific variables.  The variables 

that were not kept in this example were H1GI1M and H1GI1Y – that is because these 

variables had legitimate values greater than six.  So, had we kept them in the dataset that 

was used for the ARRAY, all values greater than six would have been inappropriately 

converted to missing.  We could have avoided that error by not using the 

_NUMERIC_ option and instead listing the variable names that were to be included in the 

ARRAY process.  

 

However, given the way that have split the process for this example, before we move 

forward, we need to bring the two “missing” datasets back together.   

 

The code for accomplishing this is below:  

 
proc sort data = missing; 

  by aid; 

proc sort data = missing2; 

  by aid; 

data missing3; 

  merge missing missing2; 

  by aid; run; 

 

As shown previously, before you can merge two datasets, you need to make sure each of 

them are sorted by the linking variable, which in this example is AID.  

 

Next, in addition to checking the LOG to make sure that the datasets were merged 

correctly, you can double check the data by printing a few observations. This allows you to 

visually check the accuracy of the data.  

 

Here, we are printing the first 10 observations [(obs = 10)]:  
 

proc print data = missing3 (obs = 10); run; 

CREATING AGE FROM INTERVIEW DATE AND BIRTHDAY 

Often, databases do not include the age of a participant when the data were collected. 

However, age can be derived from the date the interview was conducted and birthday date 

of the participant.   

The code for creating age from an interview date and birthday is as follows: 

options nofmterr; 

data clean; 

set missing3;  

idate=mdy(imonth,iday,iyear); 

bdate=mdy(H1GI1M,15,H1GI1Y);  

age=int((idate-bdate) / 365.25);  

 

In the code above, we have created a temporary dataset, “clean”.  This is what we 

commonly use to indicate that data cleaning process is being conducted. First, we create the 

interview date using three separate variables provided in the Add Health data – imonth, 
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iday, iyear. The MDY portion of the code is a SAS function that converts the values provided 

in imonth, iday, iyear to a SAS date value, which we have named idate. The participant 

birthday (bdate) is created similarly to the interview date, with the exception of the actual 

day of the birthday is not recorded within the available Add Health variables. Therefore, an 

average day for the month is substituted for an actual day, which is represented by fifteen 

(15) in this example. After single variables are created for the interview and birth dates, the 

next step is to create the age variable (age).  This is completed by finding the integer (int) 

of the interview date (idate) minus the birthdate (bdate), which is then divided by the 

number of days in the year (365.25). We use 365.25 instead of 365 to account for leap 

years.  

To verify that age was completed correctly, the user should check the SAS log and complete 

a PROC FREQ to examine the age frequencies.  Output 5 depicts the age frequency table for 

this example. The computed age should be verified against the age of participants listed 

within the codebook or sampling frame within the database documentation.   

The code used to generate Output 5 is below:  

proc freq data = clean; 

tables age; run; 

 

 

Output 5. Frequency Table of the Newly Created Age Variable 
 

RENAMING VARIABLES 

Renaming variables within SAS is relatively simple. As in every new data manipulation step, 

the first task is to review the codebook to better understand what the variable represents.  

For example, the variable H1ED19 represents the survey item, “You feel close to people at 

your school.”  Ideally, the user should rename variables to something that will remind 
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him/her as to what the variable represents.  For H1ED19, the variable will be renamed as 

“close,” as the item inquires to how close the participant feels to others within school.  

Users should repeat this step for every variable that is to be renamed.  Obviously, renaming 

variables is not a required step in cleaning your data, but when working with many 

variables, having meaningful names is incredibly helpful and more efficient than constantly 

referring to the codebook to remember what variables represent.  

The code for renaming variables is listed below. Please note that in the complete SAS 

syntax file you will see that the renaming function is executed in the same data step above 

when we created the age variable.   

 

data clean; 

……… 

Rename  BST90P19 = Poverty  

H1ED19 = Close  

H1ED20 = Belong  

H1ED21 = Prejudice  

H1ED22 = Happy  

H1ED23 = Treat  

H1ED24 = Safe 

AH_PVT = vocab_score; run; 

 

In this code, the RENAME function is used to direct SAS to change the names of the 

variables as they appear after the RENAME statement.  To rename a variable, simply enter 

the original variable name followed by an equal sign then the new variable name. When 

entering multiple variables to rename, repeat this process using only white space between 

variables as shown above.  Moving forward, the dataset no longer contains the original 

variable names. So, you must remember to use the new variables names.    

After you have renamed the variables, again it is good practice to PROC CONTENTS (as 

shown below) to verify that the original variable names are no longer in the dataset and 

that the new variable names are.  

proc contents data = clean; run; 

CREATING DUMMY VARIABLES AND REVERSE CODING 

VARIABLES  

CREATING DUMMY VARIABLES   

Two common data cleaning processes are creating dummy variables and reverse coding 

continuous variables. Categorical variables with more than two response options need to be 

dummy coded so they can be used in various analytic models.  Dummy variables are 

created by transforming a categorical variable into different variables that are coded 0 and 

1. For example, data often contain a variable for respondents’ race with response options of 

African American, American Indian/Alaska Native, Asian, white, and other.  Before race 

could be used in regression model or other predictive analytic procedures, dummy variables 

would need to be created – that is, each category/response option becomes its own 

variable. This process can easily be accomplished using IF/THEN syntax.  

For our example, we will create dummy variables from the original “poverty” variable, 

where poverty represents the proportion of persons living below the poverty level, where 1 

= low, 2 = medium, and 3 = high.  Again, we know what the variable “poverty” represents 

by consulting the Contextual Data Codebook.   
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The code for creating the dummy variables is as below.  

 

data clean2; 

set clean; 

high_prop_in_poverty = .; 

med_prop_in_poverty = .; 

low_prop_in_poverty = .; 

  If Poverty = 1 then low_prop_in_poverty = 1;  

  If Poverty = 2 then low_prop_in_poverty = 0;  

  If Poverty = 3 then low_prop_in_poverty = 0;  

 

  If Poverty = 1 then med_prop_in_poverty = 0;  

  If Poverty = 2 then med_prop_in_poverty = 1;  

  If Poverty = 3 then med_prop_in_poverty = 0;  

 

  If Poverty = 1 then high_prop_in_poverty = 0;  

  If Poverty = 2 then high_prop_in_poverty = 0;  

  If Poverty = 3 then high_prop_in_poverty = 1; run; 

  

R_Prejudice = (6 – Prejudice);run; 

 

Of the variables we have included in the paper, poverty (BST90P19) is the only true 

categorical variable. As such, using the variable “poverty”, participants are assigned to one 

of three new variables, based on the value they have for the original variable.  Before you 

can assign respondents to the appropriate dummy variables, the first step is to initialize 

(aka create) each of the dummy variables.  That is the first part of the code above where 

we have written “high_prop_in_poverty = .; med_prop_in_poverty = .; 

low_prop_in_poverty = .;”.  This code creates a new variable (i.e., a new column in your 

dataset) and assigns all participants as missing on each of the three variables.  Then, we 

use IF/THEN statements to assign respondents to the appropriate dummy variable. In the 

original variable, a value of 1 meant that the neighborhood had a low proportion of 

residents living below the poverty level.  So, in the code above, you can see that those who 

had a value of 1 for the original variable poverty now have a value of 1 for the new variable, 

low_prop_in_poverty. And zeros for the other two dummy variables. Those who had a value 

of 2 on the original variable are assigned a value of 1 for med_prop_in_poverty and 0s for 

the other dummy variables. And those who had a 3 are assigned a 1 for 

high_prop_in_poverty and 0s for the low and medium poverty dummy variables. For those 

that were missing on the original variable, poverty, they will be missing on each of the 

dummy variables as well.  That is because they did not meet the criteria stated in any of the 

IF/THEN statements so the assigned value of missing, when the dummy variables were 

created is still in place.  

Reverse coding is another common data cleaning technique. However, it is only necessary if 

individual items will be used to create composite variables (more on how to create 

composite variables in the next section). After identifying the items that will be used to 

create a composite variable, an analyst can determine if a variable needs to be reverse 

coded based on the wording of survey items and corresponding response options.  For 

example, the original variables H1ED19 - H1ED24 all ask about adolescents’ thoughts on 

different aspects of their school (e.g., feel safe at school, teachers treat students fairly, 

etc.). In reviewing each of these items (as shown in the Appendix), one can notice an 

overall theme for these variables -- lower values on most items represent positive 

connections to school and higher values represent negative connections to school.  This 

applies to all but one of the items -- H1ED21 (which we previously renamed to Prejudice).  

This item asks students “Students at your school are prejudiced”.  A response of 1 (strongly 

agree) to this item reflects a negative aspect of the school and a response of 5 (strongly 
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disagree) reflects a positive aspect of the school. Thus, in order for this item to be 

considered for inclusion in an overall school connectedness composite variable, the response 

options need to reflect the same sentiments as the other items – lower values represent 

positive school connection and higher values represent negative school connection. This can 

be accomplished by reverse coding.  

The code for reverse coding is above, just after the dummy coding -- R_Prejudice = (6 – 

Prejudice). If more than one variable needs to be reverse coded, each line of code should be 

concluded with a semicolon.   

When reverse coding a variable, R_ is often added to the variable name to indicate that the 

variable has been reversed. In order to reverse code an item, simply count the number of 

available responses in the original variable, add one, and then subtract the original variable.  

In this case, prejudice had five available responses (1 Strongly Agree, 2 Agree, 3 Neither, 4 

Disagree, and 5 Strongly Disagree), so 5 +1 = 6. This is where “R_Prejudice = (6 – 

Prejudice).” came from. Through this process, those that originally responded 1 to this 

survey item (i.e., they strongly agreed that students in their school were prejudice) now 

have a 5. Thus, response values to this item are now in the “same direction” as the other 

items related to school connectedness (i.e., a value of 5 for other items indicates a student 

does not feel safe at school or does not feel that teachers treat students fairly).  

After creating dummy variables and reverse coding variables, you want to check and make 

sure you’re your logic was correct and that people were assigned to the correct dummy 

variable and that the reverse coded variable is indeed reverse coded.  

You can do this by generating frequency tables for the original variables and the newly 

created variables. See the code below:  

proc freq data = clean2; 

tables poverty high_prop_in_poverty  

med_prop_in_poverty  

low_prop_in_poverty 

R_Prejudice Prejudice; run; 

 

To conserve space, we only provide the output that shows the frequency tables for prejudice 

and R_prejudice (see Output 6).  As you can see, the frequencies of responses were indeed 

reverse coded. The original variable had 644 participants indicate that they “strongly 

disagreed” with item (i.e., responses with value of 5) and in the reverse coded variable, 

those 644 responses are now coded as 1.   

Also, notice that the above code was written as part of a data step.  We created clean2 from 

clean. Often many data cleaning processes can be done in one very long data step, but for 

clarity and teaching purposes, we have broken them into a few separate data steps.   
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Table Prejudice Table R_Prejudice 

  

Output 6:  PROC FREQ Output for Prejudice and R_Prejudice  

CREATING COMPOSITE VARIABLES  

A composite variable is a variable that is made up of two or more items, measured at the 

interval or ratio level, that are statistically related to each other. The creation of a 

composite variable is often formed to measure multidimensional concepts that are not easily 

observed. For example, Add Health researchers were interested in assessing adolescents’ 

feelings of school connectedness, however, school connectedness is not a concept that is 

easily observed or asked about.  So, instead of having one survey item that asked 

participants how connected he/she felt to his/her school, Add Health researchers asked a 

series of items that all have the underlying concept of school connectedness. We will now 

use the six different items related to school connectedness to create an overall measure of 

school connectedness. There are multiple ways that composite variables can be derived – 

the approach we share below is one most commonly used in the social and behavioral 

sciences.  

EXPLORATORY FACTOR ANALYSIS 

The first step to creating a composite variable is to conduct an exploratory factor analysis 

(EFA) on the items of interest.  In the most basic terminology, EFA is a method of data 

reduction that seeks to identify underlying unobservable variables (i.e., school 

connectedness) that are reflected in observed/measured variables.  Using the correlation 

matrix of the variables included in the EFA, this procedure identifies how closely the items 

being considered for the composite variable “hang” together.  There are many papers 

published on conducting EFA in SAS (e.g., Goldberg, 1997; O’Rourke & Hatcher, 2014; 

Santos, Lippke, & Pope, 1998).  We provide a brief overview below, however, users are 

encouraged to consult other resources as well for more details on the EFA process, including 

recommended sample sizes, etc.   

Code for completing an EFA is as follows: 

proc factor data = clean2 method = ml priors=SMC scree mineigen=1 

reorder rotate=varimax; 

 var Close Belong R_Prejudice Happy Treat Safe; run; 

 

The syntax listed after PROC FACTOR can be rather complicated given all the options 

available, however explanations will be given for the those used within this example.  The 

first option (DATA = clean2) should be familiar to the user and directs SAS to use variables 

within the temporary clean2 dataset. The syntax METHOD = ML specifies that the maximum 

likelihood of estimation should be used during statistical processing.  Next, PRIORS = SMC 

specifies which type of communal measurement is to be used while conducting the EFA, and 

SMC specifically designates that the communal estimate to be used should be equal to the 
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squared multiple correlation of each variable to all the other variables.  The SCREE syntax 

simply directs SAS to include a scree plot within the output, and the next two commands 

MINEIGEN = 1 and REORDER directs SAS to use the smallest eigenvalue in which a single 

factor can be retained, and then to reorder the output to list the variables with the highest 

factor loadings first. The option of ROTATE = VARIMAX directs SAS to rotate the axes of the 

factors so that the results are more interpretable, while concurrently assuming none of the 

factors are correlated. After writing the complete PROC FACTOR syntax line, the user directs 

SAS to include selected variables by using VAR and adding the variables to be included in 

the EFA.  

 

Deciding how many factors to include within a final product of a composite variable can be 

confusing, as there are multiple methods to determine the number of factors. One 

recommendation is to include factors with eigenvalues ≥ 1.0. The next method is to review 

the scree plot in the output and determine where factors tend to level off along the x-axis. 

Another method is to review the percentage of variance explained by each factor and 

determine what an acceptable percentage of contribution toward variance should be. The 

last technique is to review the factor loading for each variable and drop any item with factor 

loadings less than 0.4. Decisions are often made using a combination of the above 

approaches.  For this, relatively simple example, we will focus on the last technique, 

reviewing factor loadings for variables with loadings of 0.4 or more.  

Output 7 depicts the factor loadings for the items being considered for the composite 

variable, school connectedness. Notice only one item, R_Prejudice has a loading < 0.4. 

Based on these results, C_R_Prejudice should not be included within the composite variable.  

 
Output 7: Factor Loadings for Items to use for School Closeness 

 

INTERNAL CONSISTENCY  

After determining which items “hang” together and should be used to create a composite 

variable, the internal consistency of the composite variable should also be examined. The 

most common method for assessing this is by calculating Cronbach’s alpha, a coefficient of 

reliability. This helps determine how closely related a set of items are as a group. An 

acceptable level of internal consistency is typically α ≥ 0.70.  

Code for calculating Cronbach’s alpha is below:  

 
proc corr data = clean2 nosimple nomiss alpha; 

 var Close Belong Happy Treat Safe; run; 
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In the code above, Cronbach’s alpha is calculated through PROC CORR by listing the 

“ALPHA” option. The NOSIMPLE option suppresses the descriptive statistics that PROC CORR 

generates and the NOMISS option instructs SAS to calculate Cronbach’s alpha using only 

those with complete data on the variables listed on the VAR statement.  Notice, that the 

variables included on the VAR statement are those that had factor loadings of 0.4 or greater 

in the EFA results. As shown in Output 8, these five items exhibit an acceptable level of 

internal consistency (α = .77).  Note that you want to interpret the Raw portion of the 

output as it is the measure that is based upon item covariances, thus the stronger the items 

are inter-related the more likely construct, school connectedness, is consistent across 

participants. Often the Raw and Standardized will be similar but that is not always the case.  

Standardized alpha values are rarely used because most data do not meet the assumption 

that all items have the same variances. More details on Cronbach’s alpha can be found in Yu 

(2001) & O’Rourke and Hatcher (2014).  

 

Output 8.  Partial Coefficient Alpha Output from PROC CORR  

After completing the EFA and calculating Cronbach’s alpha, the last step to creating a 

composite variable is to create a new variable in SAS. In this example, we want to create a 

new variable, School Connectedness, by taking the mean of the five items that were found 

to hang well together – Close, Belong, Happy, Treat, and Safe.   

Code to create the composite variable is listed below:  

data clean3; 

 set clean2; 

 School_Connectedness = mean (of Close Belong Happy Treat Safe); run; 

 

After creating a new temporary dataset “clean3”, the code above instructs SAS to create the 

variable “School_Connectedness” using the MEAN function in SAS  By including “of” before 

the list of variables to be used  in creating School_Connectedness, we are instructing SAS to 

calculate the mean for each person using only the items for which a person has observed 

data.  For example, a person did not answer the item about being happy at their school, the 

new variable, School_Connectedness will be calculated by taking the mean of close, belong, 

treat, and safe.   Thus, using the “of” option allows users to create the composite variable 

without requiring participants to have complete data on all items used in the composite 

variable.    

To verify that School_Connectedness was created correctly, the user should check the SAS 

log for any errors and also examine the descriptive statistics for the new variable, using 

PROC MEANS.  Because running PROC MEANS is also required to center variables, we 

present this in more detail in the next section.  

CENTERING VARIABLES  

After cleaning the data and creating any necessary variables, if you plan to run predictive 

models (e.g., regression models) the next step in managing the data is to determine if the 

continuous variables have meaningful zeros. This means that for each variable that will be 

used as a predictor, you need to assess if zero is a plausible value and if so, is it 
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meaningful? For continuous variables that do not have meaningful zeros, you should center 

those variables, thus, creating meaning for the value zero. This is important because 

interpretation of regression coefficients is more practical and meaningful when the variable 

has a meaningful zero. In our example dataset, it is plausible that we would use school 

connectedness, age, and the dummy variables for neighborhood poverty as predictors on 

adolescent achievement on a standardized vocabulary measure (vocab_score). Centering 

variables is a two-step process. First, you have to estimate the mean for each variable that 

needs to be centered, then, you use that information to create a centered version of the 

variable.  

The SAS code for both steps is below:  

proc means data = clean3; 

 var School_Connectedness age;run; 

 

data clean4; 

set clean3; 

C_School_Connectedness = School_Connectedness - 2.2952418; 

C_age = age - 15.5329949; run; 

 

In the code above, you can see that first we created a new dataset “clean4”. We had to do 

this because creating the centered variables has to occur in a DATA step.  Second, when 

naming the centered variables that you are creating, it is common practice to add “C_” to 

the beginning of the variable name.  This is a way to easily communicate that the variable 

has been centered.  Now that the centered variables have been created, you would use 

C_School_Connectednes and C_Age in your predictive models. If you wanted to check to 

make sure that the centering code was executed correctly, you can run PROC MEANS on the 

new centered variables – if the centering code worked than the mean of each variable will 

be close to zero.   

At this point you might be wondering why we did not center the other predictors – 

high_prop_in_poverty, med_prop_in_poverty, and low_prop_in_poverty? We did not center 

them because those variables are not continuous and they inherently already have a 

meaningful zero. Also, again, centering variables is only necessary if the variables in your 

dataset will be used in any type of predictive modeling.  If the variables will not be used in 

predictive modeling, you can skip this step.  Also, it is important to note that centering 

applies to predictor variables and not criterion variables.   

CREATING AN ANALYTIC DATASET  

The last step in getting your raw messy data to being ready to analyze is to create an 

analytic dataset (i.e., a dataset that contains those with complete data that you will use to 

estimate your statistical procedures).  This can be done one of two ways - listwise deletion 

or multiple imputation.  Given the complexity for correctly using either method, we do not 

cover either option in depth. However, at the end of this section, we do provide code that 

can be used to create an analytic dataset using listwise deletion. However, if you use the 

code without examining the missing data mechanisms, you can end up with biased results. 

Given the details that need to be covered to correctly handle missing data, we are writing a 

complete paper that addresses both of these options. Until then, remember that regardless 

of the method you use to handle missing data, an often-overlooked step in the process is 

examining the missing data mechanism – both listwise deletion and multiple imputation can 

yield bias results if the data do not meet the assumption of missing at random (MAR).  We 

encourage readers to read about options for handling missing data and to educate 

themselves before deciding which approach to use. And, again, stay tuned for a new SAS 
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paper that explores both listwise deletion and multiple imputation from an applied 

researchers’ perspective.   

Below is code that can be used to delete observations that do not have complete data:  

data ah.complete_data; set clean4; 

if NMISS (of aid age school_connectedness poverty vocab_score) = 0; 

keep aid age c_age school_connectedness C_school_connectedness poverty  

high_prop_in_poverty  med_prop_in_poverty low_prop_in_poverty 

vocab_score vocab_score; run; 

A few things to notice about the code above. First, you will notice the NMISS function – this 

tells SAS to include observations in the new dataset “ah.complete_data” if the sum of 

missingness for the items aid, age, school connectedness, poverty, and vocab_scores = 0. 

If an observation is missing on any of those five items they will not be included in the 

analytic dataset.  The next part of the code above instructs SAS which variables to keep in 

the analytic dataset.  You might notice that we are keeping more variables than we used in 

the NMISS function.  Why did we do this?? You should see that the variables in the keep 

statement include the original variables (which are used in the NMISS function) as well as 

the manipulated versions of the original variables (i.e., c_age, c_school_connectedness).  

We keep both the original variables and the created variables because you need the 

variables in their original format to generate descriptive statistics and the created variables 

for your inferential statistical procedures.   

CONCLUSION 

We wrote this paper to help synthesize common steps that applied researchers encounter 

when conducting quantitative research. We consider this the first paper in a series that we 

plan to write over the next few years.  Our hope is that novice SAS users find the content of 

the paper useful and that it helps users feel less intimidated when approaching quantitative 

research.  We have posted added the complete SAS code as an appendix in this paper. We 

will also share the actual SAS syntax file to the Conference Repository 

(https://github.com/sascommunities/sas-global-forum-2020).  And of course, if you have 

trouble accessing the full syntax, please reach out to either author listed below to obtain a 

copy of the file.  Although the code in this paper mirrors the code in the complete file, I 

believe that it is best to view both so you can see how the steps flow.   
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APPENDIX OF VARIABLES  

 

Variable from the Wave I: Public Use Contextual Database Codebook 

 

Survey Item Variable 

Name 

Response Frequency 

Proportion persons with income in 1989 below 

poverty level (for persons for whom poverty 

status is determined)1 

 

BST90P19 1 low 

2 medium 

3 high 

8 unstable estimates 

9 geocode missing 

3510 

1468 

1450 

3 

73 

 

Partial List of Variables from Wave I: In-Home Questionnaire, Public Use Sample 

Codebook 

 

19. (How much do you agree or disagree with 

the following statements:) 

  

[If SCHOOL YEAR:] You feel close to people at 

your school. [If SUMMER:] Last year, you felt 

close to people at your school. 

 

H1ED19 1 Strongly Agree 

2 Agree 

3 Neither  

4 Disagree 

5 Strongly Disagree 

6 Refused 

7 Legitimate Skip 

8 Don’t Know 

1273 

3025 

1214 

627 

226 

4 

128 

6 

20. (How much do you agree or disagree with 

the following:)  

 

[If SCHOOL YEAR:] You feel like you are part 

of your school. [If SUMMER:] Last year, you 

felt like you were part of your school. 

H1ED20 1 Strongly Agree 

2 Agree 

3 Neither  

4 Disagree 

5 Strongly Disagree 

6 Refused 

7 Legitimate Skip 

8 Don’t Know 

1677 

3039 

881 

564 

205 

4 

128 

6 

21. (How much do you agree or disagree with 

the following:)  

 

[If SCHOOL YEAR:] Students at your school 

are prejudiced. [If SUMMER:] Last year, the 

students at your school were prejudiced. 

H1ED21 1 Strongly Agree 

2 Agree 

3 Neither  

4 Disagree 

5 Strongly Disagree 

6 Refused 

7 Legitimate Skip 

8 Don’t Know 

878 

1713 

1523 

1589 

644 

4 

128 

25 

22. (How much do you agree or disagree with 

the following:)  

 

[If SCHOOL YEAR:] You are happy to be at 

your school. [If SUMMER:] Last year, you 

were happy to be at your school. 

H1ED22 1 Strongly Agree 

2 Agree 

3 Neither  

4 Disagree 

5 Strongly Disagree 

6 Refused 

7 Legitimate Skip 

8 Don’t Know 

1574 

2629 

1080 

706 

376 

5 

128 

6 

23. (How much do you agree or disagree with 

the following:)  

 

[If SCHOOL YEAR:] The teachers at your 

school treat students fairly.  [If SUMMER:] 

Last year, the teachers at your school treated 

H1ED23 1 Strongly Agree 

2 Agree 

3 Neither  

4 Disagree 

5 Strongly Disagree 

6 Refused 

1015 

2660 

1395 

971 

326 

4 
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students fairly. 7 Legitimate Skip 

8 Don’t Know 

128 

5 

24. (How much do you agree or disagree with 

the following:)  

 

[If SCHOOL YEAR:] You feel safe in your 

school.  

[If SUMMER:] Last year, you felt safe in your 

school. 

H1ED24 1 Strongly Agree 

2 Agree 

3 Neither  

4 Disagree 

5 Strongly Disagree 

6 Refused 

7 Legitimate Skip 

8 Don’t Know 

1622 

2908 

1044 

577 

216 

4 

128 

5 
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APPENDIX OF SAS SYNTAX   

 
Title 'Code for the GETTING DATA INTO SAS AND CREATING A WORKING DATAFILE  

section of the SGF paper'; 

 

*Code to import SAS C-Transport file -- first for importing the Add Health  

In-Home Questionnaire Data*;  

filename in "C:\Users\bellb\Documents\SESUG/21600-0001-Data.stc"; 

libname out 'C:\Users\bellb\Documents\SESUG'; 

proc cimport file=in library=out;run; 

 

*C-Transport import code for the Add Health Contextual Data*;  

filename in "C:\Users\bellb\Documents\SESUG/21600-0002-Data.stc"; 

libname out 'C:\Users\bellb\Documents\SESUG'; 

proc cimport file=in library=out; run; 

 

*The code below creates a new version of the in-home and contextual data,  

using a more meaningful name -- inhome and contextual*; 

libname AH 'C:\Users\bellb\Documents\SESUG'; 

options nofmterr; 

data ah.inhome;set ah.da21600p1;  

data ah.contextual;set ah.da21600p2; run;  

 

*The code below is ueed to see the details of the datasets -- variable names,  

sample size, etc.*; 

proc contents data = AH.contextual; 

proc contents data = AH.inhome;run; 

 

*Code to merge the in-home and contextual datasets into one dataset.  

First you sort the data then you merge the data*;  

proc sort data = AH.contextual; 

 by aid; 

proc sort data = AH.inhome; 

 by aid; run; 

 

data AH.Combined; 

 merge AH.contextual AH.inhome; 

 by aid; run; 

*again, checking the contents of the newly merged dataset -- good practice  

 to always examine the details of newly created datasets*;  

proc contents data = AH.Combined; run; 

 

**Creating a smaller data set that only contains variables that are needed  

for the study*; 

data AH.Combined_reduced_var;  

 set AH.Combined; 

  keep AID H1GI1M H1GI1Y BST90P19 

    imonth iday iyear 

  H1ED19 H1ED20 H1ED21 H1ED22 H1ED23 H1ED24  

  H1GI1M H1GI1Y AH_PVT; run; 

 

*the AH.Combined dataset now becomes the master dataset. At this point,  

the earlier datasets are no longer needed*;  

 

proc contents data = AH.Combined_reduced_var; run; 
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Title 'Code for the MISSING DATA section of the SGFpaper'; 

 

*Running freq on all variables to examine nature of the data that will need  

to be cleaned. For example, the freq tables will show all values for each  

variable -- then in consultation with the Add Health codebook, you can  

determine what values need to be changed to represent missing --  

i.e., those that refused to answer, did not know, question was not 

applicable, etc.*; 

 

proc freq data = AH.Combined_reduced_var; 

 tables 

  H1GI1M H1GI1Y BST90P19 

  imonth iday iyear 

  H1ED19 H1ED20 H1ED21 H1ED22 H1ED23 H1ED24  

  H1GI1M H1GI1Y AH_PVT; run; 

 

*Here we create a temporary dataset and then start cleaning the data.  

The data set missing is temporary because it does not have a libname attached 

to it. First, we convert response values that represent missing data to SAS 

missing notation.  

We know what values to convert based on information in the codebooks*; 

 

*Part 1 of converting data to missing when necessary*;  

 

data missing; 

 set AH.Combined_reduced_var; 

keep aid H1GI1M H1GI1Y BST90P19 imonth iday iyear AH_PVT; 

 If H1GI1M ge 96 then H1GI1M = .; 

 If H1GI1Y ge 96 then H1GI1Y = .; 

 If BST90P19 gt 3 the BST90P19 = .; run;  

  

**estimating freq tables to make sure that the code above executed 

correctly*;  

proc freq data = missing; 

tables H1GI1M H1GI1Y BST90P19; run;  

 

*part 2 of converting data to missing when necessary - details provided in 

the paper;  

 

data missing2; 

 set AH.Combined_reduced_var; 

 keep aid H1ED19 H1ED20 H1ED21 H1ED22 H1ED23 H1ED24;  

  array AH [*] _numeric_;   

  Do I = 1 to DIM (AH); 

  If AH[I] ge 6 then AH[I] = .;  

  End; Drop I; run; 

 

*checking to make sure that the code above in the array worked and the 

correct values were replaced with .*; 

proc freq data = missing2; 

 tables _numeric_; run; 

 

*now you need to bring the two missing data sets back together into one 

dataset*;  

proc sort data = missing; 

 by aid; 

proc sort data = missing2; 

 by aid; 
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data missing3; 

 merge missing missing2; 

 by aid; run; 

*in addition to checking the log to make sure that data sets were merged 

correctly, you can double check the data by printing a few observations -- 

this allows you to visually check the accuracy of the data. Below we are 

printing the first 10 observations (obs = 10); 

proc print data = missing3 (obs = 10); run; 

 

Title 'Code for the CREATING AGE FROM INTERVIEW DATE AND BIRTHDAY and 

RENAMING VARIABLES  

section of the SGF paper';  

 

*the code below contains information on two data cleaning steps - creating an 

age variable from interview date and birthdate and how to rename variables*; 

 

options nofmterr; 

data clean; 

set missing3;  

idate=mdy(imonth,iday,iyear); 

bdate=mdy(H1GI1M,15,H1GI1Y);  

age=int((idate-bdate) / 365.25); 

  

Rename  BST90P19 = Poverty  

H1ED19 = Close  

H1ED20 = Belong  

H1ED21 = Prejudice  

H1ED22 = Happy  

H1ED23 = Treat  

H1ED24 = Safe 

AH_PVT = vocab_score; run; 

 

**now, again, check that the code above worked correctly.   

PROC CONTENTS to make sure the variables now show the new names and PROC FREQ 

to make sure that the age variable was created*;  

proc contents data = clean; run;  

 

proc freq data = clean; 

table age; run; 

 

 

Title 'Code for the CREATING DUMMY VARIABLES and REVERSE CODING section of 

the SGF paper'; 

 

*Code below shows two data cleaning steps -- how to create dummy  

variables and how to reverse code data*;  

data clean2; 

set clean; 

high_prop_in_poverty = .; 

med_prop_in_poverty = .; 

low_prop_in_poverty = .; 

  If Poverty = 1 then low_prop_in_poverty = 1;  

  If Poverty = 2 then low_prop_in_poverty = 0;  

  If Poverty = 3 then low_prop_in_poverty = 0;  

 

  If Poverty = 1 then med_prop_in_poverty = 0;  

  If Poverty = 2 then med_prop_in_poverty = 1;  
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  If Poverty = 3 then med_prop_in_poverty = 0;  

 

  If Poverty = 1 then high_prop_in_poverty = 0;  

  If Poverty = 2 then high_prop_in_poverty = 0;  

  If Poverty = 3 then high_prop_in_poverty = 1;  

R_Prejudice = (6 - Prejudice); run; 

**checking to make sure the steps above executed correctly -- that  

the dummy variables are correct and that the reverse coding worked correctly;  

 

proc freq data = clean2; 

tables high_prop_in_poverty  

med_prop_in_poverty  

low_prop_in_poverty  

R_Prejudice Prejudice; run; 

 

Title 'Code for the CREATING COMPOSITE VARIABLES section of the SGF paper'; 

 

*EFA code to determine if there is a latent variable "school connectedness" - 

see paper for more details*; 

proc factor data = clean2 method = ml priors=SMC scree mineigen=1 reorder 

rotate=varimax; 

 var 

  Close 

  Belong 

  R_Prejudice 

  Happy  

  Treat 

  Safe; run; 

 

*checking internal consistency of the latent "school connectedness" variable  

based on results from EFA above*;  

proc corr data = clean2 nosimple nomiss alpha; 

 var Close 

  Belong 

  Happy  

  Treat 

  Safe; run; 

 

data clean3; 

 set clean2; 

  School_Connectedness = mean (of 

   Close 

   Belong 

   Happy  

   Treat 

   Safe); run; 

 

Title 'Code for the CENTERING VARIABLES section of the SGF paper'; 

*generating the mean of the new composite variable -- the mean will be used 

to center the variable in the next step in the code*;  

proc means data = clean3; 

 var School_Connectedness age; run; 

 

data clean4; 

set clean3; 

C_School_Connectedness = School_Connectedness - 2.2952418; 

C_age = age - 15.5329949; run; 
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proc contents data = clean4; 

run; 

 

Title 'Code for the CREATING ANALYTIC DATASET section of the SGF paper'; 

 

*the code below created a new data set that only includes observations with 

no missing data.  this is a quick way to get an analytic dataset created, 

however, as stated in the paper, other steps should also be taken.; 

 

data ah.complete_data; set clean4; 

if NMISS (of aid age school_connectedness poverty vocab_score) = 0; 

keep aid age c_age school_connectedness C_school_connectedness poverty  

high_prop_in_poverty  med_prop_in_poverty low_prop_in_poverty vocab_score 

vocab_score; run; 


