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ABSTRACT  

Traditional Generalized Linear Models (GLMs) are often favored in the insurance 

realm for rating due to their interpretation simplicity and intuitive distributional 

assumptions. This is partly driven by insurance regulation needs and partly based off 

customers’ demand of explanation for their rates. In insurance rating, there is often a need 

to provide credit reason codes and occasionally customer feedback in determining the 

factors adversely impacting policyholders’ individual premium. Machine learning models 

(sometimes referred as black-box methods), on the other hand, often lack transparency and 

interpretability but have powerful predicting potential. Actuarially, modelers have to balance 

between accurate confident pricing and model interpretability, for both the collective 

customer population and individual customers. In this paper, we demonstrate the value of 

interpretation methods at the global and local level for a Gradient Boosting Decision Tree 

model using simulated auto insurance data. We review Partial Dependence (PD), Individual 

Conditional Expectation (ICE) and Accumulated Local Effects (ALE) plots for global variable 

level interpretation as a substitute for parameter estimate and variable significance type 

analysis. We also demonstrate use of Localized Interpretable Model-Agnostic Explanations 

(LIME) and Shapley values for local prediction explainability. LIME and Shapley values can 

be used independently or together to provide feedback at an individual customer level. 

Although these methods can be easily explored on other platforms, such as R and Python, 

our research was conducted within the SAS® Viya environment, which utilizes pre-packaged 

action sets for black-box machine learning. 

INTRODUCTION  

Despite the intuition to revere model performance as the most sought after quality in 

a predictive model, model transparency takes precedence in the insurance rating setting. In 

other words, knowing how a model makes a prediction is more important than what the 

prediction itself is. Insurance companies are often required to give clear and explicit 

explanations to regulators, and occasionally due to customer demand, provide detailed 

explanations to customers about individual rates. Regulators often look for affordability and 

unfair discrimination, while insurance companies are looking for competitive advantage by 

better matching price to risk. An insurance company should be equipped to investigate an 

individual customer’s policy using a predictive model to present a report to the customer 

containing the most influential factors affecting their rates. When companies are using credit 

for rating, Fair Credit Reporting Act (FCRA) stipulates that insurance companies provide 

reason codes to the customer (2018). Sometimes the rating program requires that the 

company provides customers feedback on ways to improve their rate or what they can do to 

lower their premiums.   

The most widely used model in rating an insurance policy is the Generalized Linear 

Model (GLM) because of its lucidity and interpretability. The intuitive distributional 

assumptions and innate parametric nature of the model make it a popular modeling 

technique. However, GLM needs significant one-way visual analysis, such as Exploratory 

Data Analysis at the univariate level, to capture non-linear behavior of variables because of 



underlying linear structure. The accuracy of the predictions may fall short of other models, 

such as machine learning “black-box” models. However, as the name “black-box” model 

implies, the models lack transparency in the manner in which they reach predictions. The 

complex nature of the models presents a problem for potential use in the insurance industry 

due to aforementioned emphasis on interpretability.  

Global and local interpretation methods have been explored that are capable of 

overcoming the lack of transparency in black-box models. Global methods reflect how the 

target variable changes in response to changing the inputs of the feature variables. 

Revealing the relationship of the variables to the target through the use of global methods 

leads to meaningful diagnostics for variable selection. Local methods indicate which feature 

variables are most influential on a unique prediction of interest given by the model. With the 

ability to isolate one prediction, local methods provide a system for insurance companies to 

investigate individual policies and diagnose the most influential factors affecting the rate in 

that policy. Black-box models coupled with sufficient interpretation could potentially be 

utilized by insurance companies to give more accurate rates and useful feedback to their 

customers when needed. 

DATA AND MODELS 

To explore the global and local interpretation methods, a black-box Gradient 

Boosting Machines (GBMs) was built on two million observations of simulated auto insurance 

data with 15 variables using the action set “decisionTree”. For comparison, a Generalized 

Linear Model (GLM) was also built on the same data using PROC HPGENSELECT. Both 

models were evaluated using Mean Absolute Percentage Error (MAPE) and Lift, which 

measure, respectively, the prediction accuracy in the model and how effectively the model 

segments the target. Lower MAPE suggests better prediction accuracy, and higher Lift 

indicates better segmentation. 

 

Figure 1. Lift Charts for Gradient Boosting Machines and Generalized Linear Model  

 

As illustrated in Figure 1, the GBM reported a higher lift (14.24), and the GLM had a 

lower MAPE (1.8%). The lines shown in each Lift chart represent both the average observed 

and predicted pure premium values across 10 quantiles represented on the x-axes. Steeper 

slopes for the predicted values translate to higher Lift values, which indicate better model 

segmentation. The difference between the observed and predicted values is reflected by the 

amount of space between each of the lines on the chart, therefore, less space expresses 

lower MAPE. Despite the comparable fit statistics, the GBM captured non-linear relationships 

between the predictors and the target, which will be discussed in the following sections.   



PARTIAL DEPENDENCE 

Partial Dependence (PD) plots show how the model predictions change as the feature 

variable inputs change. One-way PD plots are concerned with displaying the relationship 

between the model predictions and a single feature variable (Wright 2018). For each level 

within the chosen feature variable, the entire dataset is replicated holding that level 

constant. The new replicated data sets are then scored using the model. The levels within 

the chosen feature variable form the x-axis values, and the average scored predictions for 

each level form the y-values that are plotted at the respective x-axis levels. 

 

 

Figure 2. Partial Dependence Plot for Driver Count 

The PD plot in Figure 2 depicts the relationship between the feature variable Driver 

Count, which denotes the number of drivers on a single policy, and the target variable pure 

premium given by a GBM and a GLM.  The grey line representing the GLM reflects a strictly 

linear relationship with the target. However, the blue line representing the GBM indicates a 

different, non-linear relationship. According to the PD plot of the GBM, on average, pure 

premium will decrease from 1 to 2 drivers on a policy and then the premium will actually 

increase from 2 drivers to 3. More than 3 drivers will not affect premium on average. 

Because the PD plot of the GBM suggests that the relationship between the Driver Count 

and pure premium is not perfectly linear, the non-linear behavior of the blue line exhibits 

the ability of the GBM to capture a relationship of the predictors to the target in a 

multivariate case that is perhaps more in line with industry knowledge and modeler 

intuition.  

Instead of assuming that all levels within a variable have the same linear effect on 

pure premium, a PD plot can reveal which levels have more or less influence on the target 

determined by a black-box model. In insurance rating, knowing which levels within a 



variable have the most influential relationship to the target provides meaningful guidance 

over the assumption that all levels are scaled with the target linearly. 

The code below utilizes an action set unique to SAS Viya that automates the 

calculations for generating a table of values that will create a PD plot: 

proc cas; 

loadactionset "astore"; 

action explainModel.partialDependence   

    result           = pd_res  

    table            = 'mod_data_3' 

    modelTable       = 'GB_astore' 

    inputs           = {{name='X_01_02'}, {name='X_01_05'}, {name='X_01_09'},  

    {name='X_01_20'}, {name='X_01_24'}, {name='X_01_26'},  

    {name='X_01_28'}, {name='X_01_30'}, {name='X_02_03'},  

    {name='X_02_07'}, {name='X_02_17'}, {name='X_02_22'},  

    {name='X_02_28'}, {name='X_03_16'}, {name='X_03_20'}} 

    predictedTarget  = "P_Target" 

    analysisVariable = {name="X_01_30", nBins= 10} 

    seed     = 1234;  

    saveresult pd_res dataset=pd;   

   run;    

quit; 

 

proc sgplot data = merged ; 

   series x = X_01_30  y = AvgYHat / 

   lineattrs = (color = BIGB thickness = 5 legendlabel = "GBM" name = "GBM"); 

 

   series x = X_01_30  y = AvgYHat0 /  

   lineattrs = (color = LIGR thickness = 5 legendlabel = "GLM" name = 

   "GLM"); 

 

   yaxis label = "Average Predicted Pure Premium" min = 0 max = 500; 

   keylegend "GBM "GLM"; 

 

run; 

 

This action call uses the following parameters: 

 table: the original dataset from which the model was trained 

 modelTable: the table containing the scoring code for the black-box model 

 inputs: specifies the model input variables to use in the analysis 

 predictedTarget: specifies the variable that contains the model's predictions 

 analysisVariable: specifies the analysis variable and its related attributes 

 seed: seed number to be used for random sampling of data 

In spite of its simplicity and the ability to depict non-linear relationships that black-

box models are able to capture, PD plots can be misleading if there are correlations between 

the predictors in the model. For example, if variable x1 = b*x2 + c, simple replication of the 

data is not going to capture this relationship. In fact, it will under-represent the correlation 

when x1 and x2 values are replicated. Also, unrealistic observations could be simulated 

during the process of replicating the data sets, which could lead to misguided interpretation. 

In the insurance application, the rating variable pool is often a collection of correlated 

variables, so interpretation methods less sensitive to correlation could be used together with 

PD plots to get a more accurate representation of the relationships between the predictors 

and the target.  



INDIVIDUAL CONDITIONAL EXPECTATION 

Individual Conditional Expectation (ICE) plots, similar to PD plots, illustrate how the 

model predictions change as the feature variable inputs change. For a chosen feature 

variable, the complementary variables for a single chosen observation are replicated for 

each level within the chosen feature variable. The replicates are scored and then the 

predictions are plotted for each respective level. This process is repeated for a given 

number of sample observations. An intuitive explanation of an ICE plot is that a PD plot 

simply represents the average of all the lines on an ICE plot (Wright 2018).  

 

 

 

Figure 3. Individual Conditional Expectation Plot for Driver Count 

The ICE plot above was generated using a macro developed by Ray Wright (Wright 

2018). The grey lines in Figure 3 represent single sampled observations and how the 

predicted pure premium changes for each number of drivers on a policy. The single blue line 

is the average of all of the grey lines, which is the same GBM line shown in the PD plot in 

Figure 2, only drawn at a slightly different scale.  

 Since many different observations are plotted, ICE plots can reveal interactions 

among the variables in the model. If the lines on a plot are excessively intersecting, that 

behavior would be indicative of an interaction present in the model. This interaction 

detectability is an advantage of ICE plots. However, because of the similarity in permutation 

sampling akin to PD plots, ICE is susceptible to the same issue of correlation among the 

variables as PD.   

 If there is little correlation present among model inputs, both PD and ICE plots are 

valid model interpretation methods that have potential insurance application due to the ease 

of calculation and implementation. Capturing non-linear behavior that more accurately 

ICE PD 



describes the relationship of the predictors to the target provides a distinct advantage in the 

rating process. However, the issue of correlation may be insurmountable in some cases, 

which leads into the next global interpretation method that has the potential to overcome 

the limitations of PD and ICE.  

ACCUMULATED LOCAL EFFECTS 

Similar to PD and ICE plots, ALE plots perform the same function of reflecting the 

relationship of the predictions to a feature variable as the inputs of that given feature 

variable change. However, instead of averaging across all predictions as the PD and ICE do, 

ALE averages the difference in predictions for specified intervals within the domain of the 

given feature variable. To calculate the difference in prediction for a single instance, replace 

the value corresponding to the given feature variable to be plotted with the upper and lower 

limit of the given interval, score those predictions, and take the difference of the two. 

Repeat the same process for the other instances in the interval. Averaging the differences of 

the instances results in the ALE for the given interval. This process is repeated for all 

specified intervals within the chosen feature variable. By averaging the difference in the 

predictions in each interval rather than averaging across the entire domain of the variable 

nullifies the effect of other correlated variables (Molnar 2019). 

 

COMPUTING THE ALE FUNCTION 

The following steps calculate the values for an ALE Plot with the variable Car Age and the 

target as pure premium using hypothetical training data. An additional predictor, 

Horsepower, is introduced for illustration purposes. 

 

Car Age Horsepower 

3 150 

6 275 

6 300 

8 300 

9 125 

 

1. Three intervals have been established for the Car Age variable – 1:4, 4:7, and 7:10. 

2. Each instance is replicated and scored by replacing the upper and lower limits of the 

interval.  

3. Take the difference of the predictions. 

 

Car Age 

Interval 

Horsepower Predicted 

Premium 

Difference 

1 150 200 
0 

4 150 200 

 

 



Car Age 

Interval 

Horsepower Predicted 

Premium 

Difference 

4 275 300 
75 

7 275 375 

4 300 375 
25 

7 300 400 

 

Car Age 

Interval 

Horsepower Predicted 

Premium 

Difference 

7 300 400 
-25 

10 300 375 

7 125 200 
-25 

10 125 175 

 

4. Once all differences have been calculated, they are averaged within the interval. 

Car Age Intervals Average Difference in 

Predictions 

 1:4  0 

4:7 50 

7:10 -25 

 

 

5. The final step is to plot the average differences within each interval. The y-axis 

values represent the average differences between the predictions, and the x-axis 

values take the same values as the predictor. However, because the effects are 

isolated to intervals, the slope of the average differences will change at the midpoint 

of each interval, rather than the changing in relation to original values of the 

predictor.  

 



 

Figure 4. Centered Accumulated Local Effects and Partial Dependence Plot for X_02_071 

ALE plots can be interpreted in the same manner as PD plots, however, ALE plots are 

centered at the mean due to calculating the average difference in predictions. To interpret 

the ALE plot in Figure 4, when the variable X_02_07 takes a value of 10, the average 

predicted pure premium will be greater than the overall average predicted pure premium by 

about 30. For comparison, the centered PD for the same variable is represented by the grey 

line. The disparity in behavior between the ALE and the PD can be explained by the fact that 

the variable X_02_07 is strongly correlated with other variables in the model. The relatively 

flat appearance of the PD line is commonly observed when model inputs are correlated. 

Therefore, the PD plot does not represent the relationship between X_02_07 and the target 

as accurately as the ALE plot.  

In the presence of correlations, ALE plots offer clear advantages over PD plots. While 

both methods provide critical insight on the relationship of the target and the feature 

variables, rating models may include correlated features, rendering PD plots less reliable. 

Therefore, ALE plots are a strong alternative when predictors are correlated and PD plots 

may be an incomplete representation.  

 

                                                           
1 Due to confidentiality, we could not reveal the true name of this variable, so the X_XX_XX 

naming convention represents a masked variable 

 



LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS 

As given in the name, Local Interpretable Model-Agnostic Explanations (LIME) 

attempt interpreting a black-box model locally, as opposed to globally as all the previous 

methods have done. Rather than examining the relationship between the predictions and a 

single variable, LIME investigates the relationship of a single prediction and the variables 

that most influenced that prediction. The overall concept of LIME is to choose a prediction 

and build a local surrogate model that is interpretable based on the characteristics of that 

prediction. The process is as follows: 

 Once a specific prediction is chosen, generate a new data set by randomly drawing 

samples from a Gaussian distribution that is centered at the selected prediction for 

each variable. The variance of each of the Gaussian distribution is calculated from 

the marginal distribution of each variable in the original data set.  

 Score the new data set using the original black-box model.  

 Next, weight the new scored samples in relation to their proximity of the chosen 

prediction.  

 A new weighted, interpretable model is trained on the generated data set that can 

then be used for subsequent local interpretation for the prediction of interest.  

 

Figure 5. Output for LIME Action Set 

The results shown above represent the LIME values of a chosen prediction in the 

data set. The output is able to provide insight on which variables will most alter the 

prediction. The leftmost variable column denotes which variables were included in the 

original model. For each variable in the original model, an estimate is given by the local 

model. Note that an estimate of 0 suggests that the variable was excluded from the local 

model through LASSO regularization. The values displayed in the rightmost column of the 

table are the original values of the prediction of interest. Each estimate in the table provides 

a local explanation for the chosen prediction, meaning that attempting to draw global 



interpretations about the model outside of the local area will lead to misguided and false 

explanations. For example, the coefficient for a variable in the local model for one prediction 

may be significantly different than the coefficient for the same variable for another 

prediction, meaning that the estimates given by a local model should not be interpreted 

globally. In this example, the variable X_01_30 has the largest valued estimate, which 

suggests that changing the input of the X_01_30 will change this specific prediction more 

significantly than the other variables. 

The code below generates the local surrogate model by employing the action set 

“explainModel” and LIME: 

data query; 

   set mycaslib.mod_data_3(obs=1); 

run; 

 

proc casutil; 

   load data = query outcaslib = 'mycaslib' 

   casout = "query"; 

run; 
proc cas; 

  loadactionset "explainModel"; 

  explainModel.linearExplainer /  

    table            = "mod_data_3" 

    query            = "query" 

    modelTable       = "GB_ASTORE" 

    modelTableType   = "ASTORE" 

    predictedTarget  = "P_TargetO" 

    seed             = 1234 

    preset           = "LIME" 

    inputs        = {{name='X_01_02'}, {name='X_01_05'}, {name='X_01_09'},  

    {name='X_01_20'}, {name='X_01_24'}, {name='X_01_26'},  

    {name='X_01_28'}, {name='X_01_30'}, {name='X_02_03'},  

    {name='X_02_07'}, {name='X_02_17'}, {name='X_02_22'},  

    {name='X_02_28'}, {name='X_03_16'}, {name='X_03_20'}} 

    nThreads     = 1; 

   run; 

quit; 
 

This action call uses the following parameters: 

 table: the original dataset from which the model was trained 

 query: a single row from the data to be investigated 

 modelTable: the table containing the scoring code for the black-box model 

 modelTableType: the type of table containing score code 

 predictedTarget: specifies the variable that contains the model's predictions 

 seed: seed number to be used for random sampling of data 

 preset: specifies the type of model explanation 

 inputs: variables to be included in the local surrogate model 

 nthreads: number of threads used 

With the ability to investigate a single prediction, LIME has the potential to equip 

insurance companies with a powerful tool. Insurers can explore a single policy and extract 

the most influential factors that could impact an individual’s rate, and supply meaningful 

feedback to their customers. 



SHAPLEY VALUES 

In place of building a local surrogate model for a single prediction, Shapley values 

evaluate the degree to which each variable contributed to making that specific prediction. 

The method is rooted in cooperative game theory, where a certain overall gain is achieved 

among the players, but the distribution of payout will be unique because certain players 

may have contributed more than others achieving the gain (Cohen 2005). This concept can 

translate directly to machine learning interpretability. For each prediction, there are some 

variables that contribute to the prediction more than others. Shapley values reveal which 

features have the most significant influence for a specific prediction. The sum of all the 

Shapley values will sum to the difference in the average prediction and the prediction of 

interest. 

COMPUTING THE SHAPLEY VALUES 

Using the same hypothetical data from the ALE example and an additional variable, Length 

of Ownership, we will calculate the Shapley value for Horsepower for the third prediction. 

Car Age Horsepower Length of 

Ownership 

Predicted 

Premium 

3 150 2 200 

6 275 2 350 

6 300 3 375 

8 300 4 400 

9 125 9 175 

 

If there are p predictors in a model, the amount of possible coalitions needed to calculate a 

single Shapley value will be 2p-1. In our example, we will have 4 coalitions: 

a. None 

b. Car Age 

c. Length of Ownership 

d. Car Age, Length of Ownership 

For all possible coalitions, calculate a prediction with the variable of interest and without 

the variable of interest, and then take the difference of the two. For coalitions that exclude 

certain variables, input those values by randomly selecting an observation from the original 

dataset. In this example, the real values are highlighted in blue and the random values in 

grey. In practice, for each coalition this process is repeated many times and the 

differences are averaged. For this example, only a single contribution for each coalition is 

calculated.  

1. The first coalition includes no predictors, so we generate those values by randomly 

selecting those values from the original data set. 

Car Age Horsepower Length of 

Ownership 

Predicted 

Premium 

9 125 2 225 

3 300 3 350 

 



The difference with and without Horsepower in this coalition is 350 – 225 = 125. 

 

2. The second coalition includes Car Age. 

Car Age Horsepower Length of 

Ownership 

Predicted 

Premium 

6 275 2 350 

6 300 9 325 

 

The difference with and without Horsepower in this coalition is 325 – 350 = -25. 

 

3. The third coalition includes Length of Ownership. 

Car Age Horsepower Length of 

Ownership 

Predicted 

Premium 

6 300 3 375 

8 300 3 400 

 

The difference with and without Horsepower in this coalition is 400 – 375 = 25. 

 

4. The fourth coalition includes Car Age and Length of Ownership 

Car Age Horsepower Length of 

Ownership 

Predicted 

Premium 

6 150 3 200 

6 300 3 375 

 

 The difference with and without Horsepower in this coalition is 375 – 200 = 175 

 

5. Averaging all the differences would give  

a. (125 + -25 + 25 + 175) / 4 = 75 

Hence, the Shapley value for Horsepower in this example is 75. 

6. Since all Shapley values sum to the difference in the average prediction and the 

prediction of interest, the interpretation of the value given above relies on the 

Shapley values of the remaining features.  

a. The Shapley values should sum to: 

375 (actual prediction) – 300 (average prediction) = 75 

b. An example for the remaining Shapley values would be 

Horsepower: 75 (from above) 

Car Age: 50 

Length of Ownership: -50 



c. Horsepower contributed the most to the prediction of interest in comparison 

to Car Age and Length of Ownership.  

However, a significant drawback to Shapley values is that the calculations are 

extremely computationally expensive. The possible coalitions needed for a Shapley values 

increases exponentially as the amount of features in the model increase. The next section 

discusses a method that overcomes the problem of intensive calculation and limitations of 

the interpreting Shapley values.  

 

SHAPLEY ADDITIVE EXPLANATIONS 

Computing classical Shapley values can give insight into which variables have the 

most influence on the certain prediction, but it becomes computationally cumbersome as 

the dimension of the data set increases. However, Lundberg and Lee (2017) developed a 

method called KernelSHAP, which uses special weighted regression to compute 

approximated Shapley values that are also local regression coefficients. KernelSHAP has 

been shown to decrease computation times significantly compared to computing classical 

Shapley values. 

 

 

Figure 6. Output for Local Model Using KernelSHAP 

The table above displays the Shapley values for the same prediction of interest used 

in calculating the LIME estimates in Figure 5. While the estimates shown in Figure 6 are 

regression coefficients for a local surrogate model, they are also the Shapley values for the 

prediction of interest. A common misinterpretation of these estimates is the idea that when 

removing a variable from the model, the prediction will change by the same amount of the 

Shapley value of the removed variable. This interpretation is incorrect because a Shapley 

value is the contribution to the difference between the actual prediction and the mean 

prediction. By removing a variable from the model, the actual prediction and the mean 

prediction on the new model, created by removing the variable, will change.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Shapley Values Plot 

A better visual representation of the Shapley values given in Figure 7 can be 

observed in the graph above, where the blue shaded boxes represent the positive Shapley 

values and the grey boxes correspond to the negative Shapley values. The visual aid clearly 

highlights that the variables X_01_26 and X_01_02 contribute most to the prediction, and 

the variable X_02_22 influences the prediction the most negatively.  In essence, X_01_26 is 

the factor that most influences the price of this customer’s premium.  

The aid also illustrates the fact that the Shapley values sum to the difference 

between the actual prediction and the mean prediction. By overlapping the grey area 

(negative Shapley values) onto the blue area (positive Shapley values) the point at which 

the two areas cancel out each other would be the value of the difference between the 

actual prediction and the mean prediction. In this case that value is 396 (actual) – 293 

(mean) = 103. 

 

 

 

 

 

 

 

 

 

 

  

X_02_22 X_01_26 X_01_02 



The code below generates the Shapley values by employing the action set “explainModel” 

and KernelSHAP: 

proc cas; 

  loadactionset "explainModel"; 

  explainModel.linearExplainer /  

    table            = "mod_data_3" 

    query            = "query" 

    modelTable       = "GB_ASTORE" 

    modelTableType   = "ASTORE" 

    predictedTarget  = "P_TargetO" 

    seed             = 1234 

    preset           = "KERNELSHAP" 

    inputs        = {{name='X_01_02'}, {name='X_01_05'}, {name='X_01_09'},  

    {name='X_01_20'}, {name='X_01_24'}, {name='X_01_26'},  

    {name='X_01_28'}, {name='X_01_30'}, {name='X_02_03'},  

    {name='X_02_07'}, {name='X_02_17'}, {name='X_02_22'},  

    {name='X_02_28'}, {name='X_03_16'}, {name='X_03_20'}} 

    nThreads     = 1; 

   run; 

quit; 
 

This action call uses the following parameters: 

 table: the original dataset from which the model was trained 

 query: a single row from the data to be investigated 

 modelTable: the table containing the scoring code for the black-box model 

 modelTableType: the type of table containing score code 

 predictedTarget: specifies the variable that contains the model's predictions  

 seed: seed number to be used for random sampling of data 

 preset: specifies the type of model explanation 

 inputs: variables to be included in the local surrogate model 

 nThreads: number of threads used 

 

In addition to the rapid computation time compared to regular sampling Shapley 

values, the most significant advantage of KernelSHAP is that it combines the methods of 

Shapley values and LIME. Since Shapley values are included in the calculations of 

KernelSHAP, the same desirable properties affixed with Shapley values translate to 

KernelSHAP. 

 

 

 

 

 

 

 

 



REASON CODES AND CUSTOMER FEEDBACK 

Through the use of the local methods discussed in the previous section, insurers 

would be equipped to provide reason codes and more complete customer feedback. For 

example, suppose a customer named John recently inquired about his car premium rate. 

The insurer could input the customer’s information through a black box model in order to 

reach a prediction regarding the price of John’s rate. By applying the local interpretation 

method, KernelSHAP, to the prediction given by the black box model, the company 

concludes that the length of time that John has owned the car is the most influential factor 

affecting his premium. LIME could provide additional insight on which direction John could 

toggle the value of the most significant variables to improve his rate. If the LIME coefficient 

corresponding to length of ownership is negative, LIME suggests that an increase in the 

length of time that John owns his car will lower his premium on average. While the above 

example only examines the most influential variable, in practice, insurers could provide a 

complete report of all of the factors affecting a customer’s rate in a ranked order of impact 

for a fully detailed explanation of the customer’s premium.  

Credit reason codes related to credit scores are well known to most savvy credit card 

users. Similarly, in insurance industry it is common to use credit-based scores to rate and 

underwrite customers. The correlation between an individual’s financial behavior and 

insurance risk is very well known. Therefore, credit-based scores are often included in the 

pricing models in addition to traditional insurance rating variables. As required by FCRA law, 

insurers are required to disclose up to four adversely impacting credit variables.  In the 

event that one or more of the credit variables in the model result in a significantly large 

Shapley value for a specific prediction, the company would be able to identify variables 

strongly impacting the rates. Through the implementation of Shapely in conjunction with 

LIME, one can identify top four adversely impacting credit variables.  

For example, Figure 6 includes a comprehensive list of the Shapley values for the 

predicted rate of a single customer. In order to determine the features most significantly 

contributing to the predicted rate, the insurer will examine the four predictors with the 

largest positive Shapley values, which are X_01_26, X_01_02, X_01_05, and X_03_16. 

Next, referring to Figure 5, which includes the LIME estimates for the same prediction, the 

coefficients for X_01_26, X_01_02, and X_01_05 are negative, indicating that an increase 

in the values for those variables would most likely result in a decrease in the customer’s 

predicted rate. Hence, the insurer could advise the customer, if applicable, to increase the 

values associated with the variables X_01_26, X_01_02, and X_01_05 in effort to lower the 

customer’s current rate.  

CONCLUSION 

Machine learning black-box models have shown promise over traditional Generalized 

Linear Models with respect to model performance, but have yet to be fully implemented in 

the insurance industry due to the lack of intrinsic interpretability. However, as a result of 

the development of black-box model interpretation methods, black-box models could be 

applied to insurance rating for more accurate pricing and better customer feedback. The 

global methods presented in this paper, such as ALE plots, illuminate the relationship of 

rating variables to the predicted pure premium that would otherwise be less understood. 

With knowledge of these relationships, modelers can take measures to improve subsequent 

model performance leading to more accurate pricing. The local methods outlined in this 

paper, Shapley values and LIME, enable insurers to communicate to their customers which 

factors are most adversely affecting customer rates, and potential courses of action in order 

to lower their current rates.  
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